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1. INTRODUCTION. The purpose of this study was to establish a baseline
for assessing the execution efficiency of Model Based Vision (MBV)
algorithms coded in both the Ada and C programming languages. Model-
based vision systems compare predictions of target signature in sensed
data with information extracted from sensed data to achieve target
recognition. To date, prediction of electromagnetic sig.iature for
Synthetic Aperture Radar (SAR) is the emphasized sensed data. Under
contract with Wright Laboratory, The Analytic Science Corporation
(TASC) has extracted algorithms from their MBV system and delivered them
to the Government. The algorithms delivered to the Government are to be
used as benchmarks for evalutating the performance of different
processors for MBV applications. All of the algorithms delivered are
coded in the C programming language.

To evaluate the suitability of Ada for MBV applications, an important MBV
algorithm from the TASC MBV system, called Fast Pairwise Nearest Neighbor
(FASTPNN), was translated in its orignal C form to Ada and benchmarked on
both a VAX 11/780 and MIPS Magnum 3000 computer. While the FASTPNN
algorithm comprises only a small subset of the entire TASC MBV system, in
terms of the general types of processing requirements it imposes, it is
representative of a significant portion of the TASC MBV system.



2. DESCRIPTION OF PAIRWISE NEAREST NEIGHBOR ALGORITHM.

The Pairwise Nearest Neighbor (PNN) algorithm is a vector quantization
procedure used inside the information extraction portion of the TASC MBV
system. The PNN algorithm is used to represent the significant
characterists of a large number of image samples (or vectors) with a
smaller specified number of vectors such that the derived set of vectors
represent the original set of vectors as "best" as possible with respect
to coordinate position and weight (gray level). The PNN algorithm
derives a specified number of quantization vectors by progressively
merging together pairs of vectors with minimal weighted distance between
their centroids.

The TASC MBV system uses a vector quantizer which consists of the
FASTPNN vector quantizer cascaded with a Linde-Buzo-Gray (LBG) vector
quantizer. The LBG vector quantizer is an iterative algorithm that
produces a set of quantization vectors that minimize mean square
quantization error; however the algorithm tends to converge to local
minima unless good estimates for initial quantization vectors are
available. The PNN vector quantizer provides a near optimal set of
quantization vectors, that support the functional needs of the LBG
algorithm.

2.1 Full Search Implementation of PNN Algorithm

The key to quick execution of the PNN algorithm is quickly finding the
closest pairs of entries (vectors) among the distributed set. Figure 1
describes the sequence of operations in the full search implementation
of PNN. Figure 1 shows that the full search implementation of PNN is an
iterative procedure where on each iteration the pair of vectors which
generates the least error when merged (the closest pair) is merged. The
algorithm explicitly requires that, at each iteration, each vector's
nearest neighbor be found. The calculation to determine the closest
vector pair is essentially a weighted distance calculation where the
distance between the two vectors are weighted by the gray level (or
weight) of each of the two vectors. The new vector is chosen to
minimize the error incurred by replacing the two original vectors into
one new vector.

In general, the number of distance calculations to find the two closest

vectors among a randomly distributed set is given by

DIST CALC = (N * (N-i)) / 2 (1)

where DIST CALC is the number of permutations of distance calculations
required and N is the number of entries (vectors). Thus, if one were
to intitiate a full search PNN with 1000 entries, then the first
iteration would require 499,500 distance calculations to find the
closest vector pair for merging. Once the first iteration was
completed, the following iterations would require much fewer distance
calculations to find the closest vector pairs since only the distances
from the "new" vector to each of the remaining entries would need to
be recalculated. The distance calculations among the remaining entries
would not need to be recalculated. Thus, in our example, only 999
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distance calculations would be required on the second iteration, and 998
iterations required on the third iteration. This procedure continues
iteratively until the desired number of quantization vectors are
reached. Thus, the total number of distance calculations is given by

TOT DISTCALC - N*(N-l)/2 + N-i + N-2 + ... P (2)

where TOT DIST CALC is the total number of distance calculations
required, N is the input data size, and P is the desired number of
quantization vectors.

The first term on the right hand side (RHS) of equation (2) dominates
the equation and it is obvious that the full search implementation of
PNN has computational requirement proportional to O(N**2).

2.2 Fast Implementation of PNN Algorithm

If the requirement to merge the absolute closest pair of vectors at
each step is relaxed, as long as vectors get merged eventually then a
fast implementation of the PNN algorithm can be derived (Reference 2).
This approximated PNN algorithm is called the "fast" PNN (FASTPNN)
algorithm. For most applications the error introduced by the FASTPNN
approximation of PNN is considered tolerable (reference). The "fast"
implementation of PNN was used in this study.

Figure 2 describes the sequence of operations in FASTPNN. The FASTPNN
algorithm initially constructs a set of entries from the input data,
then iteratively merges pairs of entries until a specified number of
quantization vectors are reached. At each iteration, the algorithm
proceeds by recursively splitting sets of entries, or buckets, into
pairs of buckets until the total number of entries in each bucket is
at or below a prespecified number. From each bucket, a candidate pair
of entries is nominated that, if merged, provide the smallest increase
in quantization error of all pairs within the bucket. A specified
percentage of the pairs are selected and merged, with the individual
buckets merged into a single bucket to complete an iteration. The
sequence is repeated until the total number of entries is equal to the
specified number of quantization vectors. The value vectors in the
final set of entries define the derived quantization vectors.

The computational savings in FASTPNN is derived in the algorithm's
ability to "intelligently" split the global data set among a specified
number of localized regions or buckets. Merging of vectors are then
performed independently and with more efficiency within these localized
regions (buckets).

A key parameter in FASTPNN is BUCKETSIZE, the maximum number of vectors
per bucket. BUCKETSIZE plays a key role in determining the number of
distance calculations involved in finding the closest vector pair.
Since rASTPNN requires that the data be split evenly across all buckets
then the total number of buckets required for a particular iteration
equals the number of input vectors divided by BUCKETSIZE.

BUCKET NUN a N/BUCKETSIZE (3)
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where BUCKET NUM equals the total number of buckets for a data set of
size N, and bucket containing BUCKETSIZE entries. From equation (1), to
find the closest vectoL pair in each particular bucket requires that
(BUCKETSIZE * (BUCKETSIZE - 1)) / 2 weighted distance calculations be
performed. Thus, the total number of distance calculations for the
complete data set on tie first iteration equals the number of distance
calculations per bucket times the number of buckets, or

DISTCALC = (BUCKETSIZE * (BUCKETSIZE - 1)/2) * N/BUCKETSIZE (4)

Equation (4) reduces to

DIST CALC N * (BUCKETSIZE - 1)/2 (5)

where DIST CALC is the total number of distance calculations required on
the first iteration of FASTPNN. Thus, it is readily seen from equation
5 that as BUCKETSIZE decreases the number of calculations goes
proportionally down. In the "worst-case" limiting case, if BUCKETSIZE
is equal to N (all of the entries are in one bucket) we get the same
result as obtained in equation (1) for the full search implementation.

As a simplified example of the magnitude by which FASTPNN reduces the
number of distance calculations, let's suppose as we did in the last
section that we begin PNN with 1000 entries. If we assume that
BUCKETSIZE is ten, then only 4,500 distance calculations are required on
the first iteration to find the closest vector pairs. This is
significantly lower than the 499,500 distance calculations required by
the full search implementation on the first iteration.

The number of vectors merged per iteration is given by the term
KDMERGE * BUCKETNUM where KDMERGE is a fixed percentate of the top
vector pair candidate from each bucket.

Thus, on the second iteration, the number of distance calculations will
be reduced to (N - KDMERGE*N/BUCKF.TSIZE) * (BUCKETSIZE -1) /2

Although, the number of distance calculations in determining the
candidate vector pairs for merging are greatly reduced by using FASTPNN,
there are other computational "overhead" factors associated with the
FASTPNN algorithm which are not present in the full search
implementation nf PNN. From Figure 2, these include initialization of
the K-d tree data structure and splitting and merging of buckets.
Despite these additional "overhead" factors, it has been shown that
FASTPNN has computational efficiency proportional to O(N log N).

6



3. SOFTWARE/BENCHMARK IMPLEMENTATION OF FASTPNN

As stated in the introduction, the FASTPNN algorithm was delivered to
the Government coded in the C programming language. Figure 3 shows a
subprogram calling tree of the FASTPNN algorithm. Note from Figure 3,
that the FASTPNN subprogram structure divides into 3 main parts. These
three parts include BuildKDtree, MergedownKDtree, and DestroyKDtree.

BuildKDtree contains the subroutines which involve building and
initialization of the K-d tree data structure. The K-d tree is the
data structure which permits the partitioning of the global data set
into buckets (localized regions) from which nearest neighbor searches
can be performed independently. With reference to Figure 2, the
functionallity of BuildKDtree is described by block 1 of of the block
diagram.

MergeDownKDtree contains the routines which reduce the K-d tree built in
Buildkdtree to the specified number of centroids (vectors). With
reference to Figure 2, the functionallity of MergeDownKDtree is
described by blocks two through six of the block diagram.

DestroyKDtree contains the routines which permit the deallocation of memory
which was dynamically allocated in BuildKDtree and MergeDownKDtree. The
functionallity of DestroyKDtree is not described in Figure 2, as it is
not a necessary part of the FASTPNN algorithm. DestroyKDtree is merely
provided to implement the good software practice of deallocating objects
no longer in use.

3.1 C Implementation Structure of FASTPNN Benchmark

To permit timing of the C coded FASTPNN algorithm, FASTPNN was
integrated with a timer to form a benchmark. The timer measured the
process CPU time utilized while running FASTPNN. The basic strategy in
timing the FASTPNN algorithm was to have a main (driver) program obtain
the initial time just before making a function call to FASTPNN, followed
by another call to the timer just prior to executing FASTPNN. The
difference between these two times is the time of interest (elapsed
time). Because timers use system dependent resources, a separate timer
function was written for both the VAX 11/780 and the MIPS MAGNUM 3000.
Appendix A provides the C source code listing of the FASTPNN benchmark.

Figure 4 shows the module structure of the C coded FASTPNN benchmark.
The FASTPNN benchmark is composed of five modules. Two of the five
modules are header files. Header files are used in C to contain
definitions and declarations which are to be shared among different
files (modules). The arrows in Figure 4 are used to indicate the
dependency of particular modules on the header files. For instance, the
arrow from FASTPNN.c to FASTPNN.h indicates that FASTPNN.h is to be
"included" into FASTPNN.c. Header file Timer.h contains the interface to
the system routines which perform the timing of the benchmark. Header
file FASTPNN.h contains the data structure declarations which are used
in FASTPNN.c and, to a limited extent, in Main.c. The main program,
Main.c, is used to read the data, perform the timing of FASTPNN, and
output the results.

7
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3.2 Ada Implementation of FASTPNN Benchmark

Presented in this section is the organization structure from a
module (or compilation unit) level of the C to Ada translated FASTPNN
benchmark. The details of the actual coding from C to Ada are addressed
in section 4 of this report. Appendix B provides the source code
listing of the Ada coded FASTPNN benchmark.

The Ada coded FASTPNN algorithm was integrated with a timer to form
a benchmark. The timer measured the process CPU time utilized while
running FASTPNN. As with the case of the C benchmark, a separate timer
(body) was written for both the VAX 11/780 and the MIPS MAGNUM 3000.

Figure 5 shows the overall module structure of the Ada coded FASTPNN
benchmark. Five packages were used in the benchmark implementation.
Data Struct_Pkg contains the declarations of all data types used in the
benchmark. Packages Build_Pkg, MergeDown Pkg, and Destroy Pkg contain
all of the FASTPNN subroutines presented in Figure 3. Package Timer Pkg
contains the sytem dependent routines which permit benchmark timing to
be performed. The arrows in Figure 5 are used to indicate the dependency
of the particular modules with each other. For instance, the arrows
pointing from FASTPNN to Build Pkg, MergeDownPkg, and Destroy Pkg
indicates that these three packages must be "withed into" Build Pkg.
The main program is used to input the data, time FASTPNN, and output the
results.

Figure 6 shows the "package location" of each of the FASTPNN
subroutines. Build Pkg contains all of the routines which are nested in
the Buildkdtree portion of Figure 3. MergeDownPkg contains the
routines which are nested in the MergeDownKDtree portion of Figure 3.
DestroyPkg contains the routines which are nested in the DestroyKdtree
portion of Figure 3. Listed in the Ada specification portion of each of
the above threa packages, are the routines which must be visible outside
of their local package usage. Note from Figure 3, that since FASTPNN
calls procedures BuildKDtree, MergeDownKDtree, and DestroyKDtree, these
three procedures are all included in the specification (as opposed to
body) portion of their respective packages. Procedure CreateKDbucket is
included in the specification portion of Build Pkg, since it called by a
routine (SplitBucket) outside of BuildPkg. Procedures DestroyKDnode,
DestroyKDbucket, and DestroyKDentry are included in the specification
portion of DestroyPkg since they are called by routines outside of
Destroy_Pkg.

3.3 Benchmark Data Set

TASC provided the Government with an input data set to be used for
executing the FASTPNN benchmark. The input data set consisted of a
single chip of SAR signature prediction data of a B52 aircraft. A chip
is a subregion of interst extracted from a larger image (i.e 1K x 1K).
Chips typically range in size fro.o 64x64 to 128x128 pixels. An image
plot of the B52 aircraft chip is displayed in Figure 7. This data was
obtained by using a prediction tool developed at TASC for predicting SAR
returns from various targets.

10
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Figure 7. Image Plot of FASTP-N Input Data Set
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The input SAR data set (chip) contained 96x96 samples (vectors). Each
sample contained 3 components- an x coordinate position, a y coordinate
position, and a gray level (weight). Thresholding was used to reduce the
intial data set of 5184 vectors t3 1,675 vectors. The purpose of
thresholding is to reduce the data set by eliminating vectors with non
sIgnificant weight. The reduced set of 1,675 vectors was the actual
input to the FASTPNN algorithm.

14



4. ADA TO C TRANSLATION STRATEGY.

To establish a uniform framework for recoding the FASTPNN benchmark
from C to Ada, a C to Ada translation strategy was adopted. Because the
goal is to compare the inherent efficiency of Ada with C, no attempt was
made in the translation process to improve the execution efficiency of
the Ada source code beyond that of the C source code. Thus, a direct
"line by line" translation strategy was adopted.

4.1 Data Structures

The first step in the translation process was to "map" the individual C
data structures to "equivalent" Ada data structures. In general, the
mapping between C and Ada data stuctures is relatively straightforward.
Table 1 below highlights the main data structure mappings used in this
study.

TABLE 1. MAPPING OF C TO ADA DATA STRUCTURES

C Ada

Dynamic Array (*) Unconstrained Array
Pointer Type Access Type
Dynamic Array of Pointers (**) Unconstrained Array of Access Types
Struct Record
Union Record with Variant Part

Table 2 provides an example of the data structure mappi 'ng techniques
presented in Table 1 by presenting two of the translated data structures
which were extracted from the FASTPNN algorithm. The left hand side of Table
2 shows the original C coded data structure and the right hand side of Table
2 shows the Ada translated data stucture. These data structures can be found
in Frstpnn.h (Appendix A) and DataStructPkg (Appendix B) of the C and Ada
source code respectively.

The sections below provide a brief explpnation of the data structure
mappings Jisplayed ia Table 1 and used as examples in Table 2.

4.1.1 Dynamic Arrays/Unconstrained Arrays

C Implemntation. Structure componets *mean, *wmean, and *wsqmn of
struct kdentry in Table 2a all correspond to dynamic arreys containing
floating point numbers. The number of array components in each of the
above arrays is constrained at run time to equal the dimension of the
problem's application (i.e. if the problem dimension is two, there would
he two components for each arrayS. Thus, in the case of FASTPNN, the
use of dynamic arrays permits the flexiblity to use FASTPNN for a
generalized n dimensional application. At run-time, memory space is
dynamically allocated by making a call to the libray function calloc
with the dimension size passed as a parameter to the function calloc.

Ada Implementation. In Ada, one also could also dynamically allocate
the arrays *mean, *weight, and *wsqmn by using allocators. However, Ada

15
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pelmits an easier and more efficient method to derive most of the
flexibility of the dynamic array through use of the unconstrained array.
The unconstrained array enables one to treat arrays which

have the same characteristics but differ only in their size, as
equivalent types. Type meanarraytype in Table 2a is an example of an

unconstrained array type.

4.1.2 Pointer Types/Access Types

Pointer types in C map to access types in Ada.

4.1.3 Dynamic Array of Pointers/Unconstrained Array of Access Types

C Implementation. Dynamic arrays of pointers were used to maintain linked
list pointers in multiple dimensions. As explained in section 4.1.1,
the size of the arrays are dynamically allocated to equal the dimension
of the application problem. In Table 2a, structure component **next
provides an example of a dynamic array of pointers.

Ada Implementation. Unconstrained arrys of access types were used to
maintain linked list pointers in multiple directions. In Table 2a,
record componet next_array provides an example of an unconstrained array
of access types.

4.1.4 Structures/Records

Structures in C map directly to records in Ada.

4.1.5 Structures Containing Unions/Variant Records.

C Implementation. Unions, like structures, contain members whose
individual data types may differ from one another. However the members
that compose a union all share the same storage area within the
computer's memory, whereas each member within a structure is assigned
its own unique storage area. Table 2b provides an example of a structure
containing a union.

ADA Implementation. Ada does not contain an equivalent data structure
directly mapable to the C union isolated (not contained inside another
data structure). However, the Ada variant record maps closely to the
case where a where a C union is contained within a C structure. In this
case, the "union" portion is represented by the variant part of the
record. Table 2b provides an example of a variant record.
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4.2 C to Ada Coding Dualities

The final step in the C to Ada coding strategy was to highlight the
significant coding dualities between C and Ada. Table 3 below outlines
a non exhaustive list of coding dualities between C and Ada.

TABLE 3. Miscellaneous C to Ada Issues

C Ada

Loop Statements Loop Statements
- for - for
- while - while

Break Exit

Conditional Statements Conditional Statements
- if -if/end if
- if/else - if/else/end if
- if/else if/else if!.. ./else - it/elsif/elsif/... /else/end if

- switch - case

Functions Procedures or Functions

Pointer Type Operations Access Types
- *p - p.all
- p->structurecomponenL - p.record componet
- &p -p'ADDRESS

Dynamic Allocation Dynamic Allocation
- calloc, malloc - new

Deallocation Deallocation
- Cfree - UncheckedDeallocation

Logical Operators Logical Operators
- && - and then
- II - or else

4.2.1 Loop Statements

Loop statements map very closely between C and Ada and only involve
straightforward syntax modifications to convert from one language to the
other

4.2.2 Conditional Statements

Conditional statements map very closely between C and Ada and only
involve straightforward syntax modifications to convert from one
language to the other

4.2.3 "Break"/"Exit" Statement

18



The "break" statement in C and the "exit" statement in Ada permit the
innermost enclosing loop to be exited immediately without "testing" at
the bottom or top of the loop.

4.2.4 Subprograms

C Implementation. All subprograms in C are implemented as functions.
A C function returns a single value as a result of a call.

Ada Implementation. A subprogram in Ada can be implemented either as a
tunction or a procedure. The following guidelines were used to determipe
whether a function or a proceduLe was used. A procedure was used whenever
two or more parameters were to be modified through a subroutine call. If
one or less parameters was to be modified then either a function or a
procedure was used. The decision to choose either a function or a
procedure was based upon the characteristics of the subprogram. The
following coding convention was used when deciding upon a function or a
procedure. If the state of the input argument was to be modified then a
procedure call was made. Thus, if the subprogram could be written as an
Ada "in-out" variable, then an Ada procedure was used. If just some
value was returned, then a function was used. Thus, if the variable that
needed to change, was characteristic of an Ada "out" parameter, then an
Ada function was used.

4.2.5 Pointer Operations

C Implementation. The unary operator * is called the indirection
operator. when applied to a pointer, the indirection operator accesses
the object that the pointer points to. For example, if a pointer
variable, p, points to an integer of value 2, then the statement x - *p
assigns a value of 2 to the integer variable x. If we assume that the
pointer variable, p, points to a structure which contains two members
(structure components), say member_1 and member_2 respectively, then the
statement x = p -> member_1 assigns the value of structure component
member 1 to the variable x, and the statement y = p -> member_2 assigns
the value of structure component member 2 to variable y. The unary
operator &, when applied to a variable, gives the memory address of the
object. For example, the statement p = &x assigns the address of x to
the pointer variable p.

Ada Implementation. The word "all" is used to access objects pointed to
by an access type variable. For example, if an access variable type, p,
points to an integer of value 2, then thL statement x := p.all assigns a
value of 2 to the integer variable x. It we assume that the access
variable, p, points to a record which contains two members, say member -l1
and member 2 respectively, then the statement x := p.member 1 assigns
the value of record component member 1 to the variable x and the
statement y := p.member2 assigns the value of record componet member 2
to the variable y. To obtain the memory address of a variable, the
attribute 'Address from package system must be used.

4.2.6 Dynamic Allocation

C Implementation. The function calloc was used in conjunction with the
function sizeof to obtain blocks of memory dynamically. As an example,
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the statement

ip = calloc(n, sizeof(int))

allocates memory for an array having n elements, with each component
having a length equal to number of bytes used by the host machine in
representing an integer (usually 2). A pointer ip is returned to these
n*2 (assuming an integer is 2 bytes) bytes of uninitialized storage, or
NULL if the request cannot be satisfied.

Ada Implementation. Dynamic allocation is performed in conjunction with
the "new" statement. Below is the code to translate the same example as
presented in the C case above into Ada

type integerarraytype is array (1 .. n) of integer
ip := new integerarray_type;

The first statement of the above code declares an array of integers of n
elements long of type integer array type. The second statement uses the
keyword "new" to create a designated object of type integer arraytype
and it stores the memory address of the newly created object in access
type ip.

4.2.7 Memory Deallocation

Deallocation is used to "free" memory which was previously dynamically
allocated but is no longer in use. The storage used by that variable
can then be reused to allocate a new variable.

C Implementation. The function free deallocates space which was
previously dynamically allocated by a call to calloc oc malloc. For
example, if we assume that memory was previously dynamically
allocated by the statement p = (int *) calloc(n, sizeof(int)) hen the
statement free(p) frees the space pointed to by p.

ADA Implementation. Unchecked Deallocation is one of the four
predefined generic units that are provided by every implementation of
the Ada language . In the Ada language, allocated variables are
deallocated by calling an instance of the generic procedure
Unchecked Deallocation. A call on an instance of Unchecked Deallocation
takes one variable, which is a variable of access type. The allocated
variable designated by the parameter is deallocated, and the parameter is
set to NULL. For example, assume that memory was previously dynamically
allocated by the statement p := new IntegerArrayType; where
integerArray_Type is an array of integers. To deallocate the array of
integers, it is first necessary to instantiate the generic procedure
Unchecked Deallocation by the statement "procedure FREE is new
UncheckedDeallocation (Integer, IntegerArray Ptr Type);" and then the
statement "FREE(IntegerArrayPtr)" is used deallocate the array. Note,
that there is no requirement to use the name "FREE" as any name (i.•
DeallocateCell, Dispose, etc) could be used.

4.2.8 Logical Operators.

C Implementation. Logical operators joined by the logical operators
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&& and II are evaluated left-to-right, but only until the overall
true/false has been established. In the case of the && operator, if the
left-hand expression evaluates to false, the AND THEN operator returns
the value false immediately without evaluating the right-hand
expression. In the case of the II operator, if the left-hand expression
is true, the I1 operator returns a true value without checking the other
operand.

ADA Implementation. The Ada equivalents of && and II respectively
are AND THEN and OR ELSE repectively. These are called short-circuit
AND and short-circuit OR respectively. They produce the same results as
the plain AND and OR, but they force the computer to evaluate the
expression in left-to-right order.
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5. BENCHMARK DEVELOPMENT SYSTEMS

This section provides a description of the two development systems used
in this study to perform the benchmarking.

5.1 MIPS MAGNUM 3000.

5.1.1 MIPS MAGNUM 3000 Development System. Below is a description in
outline form of the MIPS Magnum 3000 workstation used in this
benchmarking study

- R3000 Central Processing Unit (CPU) running at 25 MHZ

- R3010 Floating-Point Coprocessor (FPC), running at 25 MHZ

- 32 Kbytes of instruction cache (I-cache) and 32 Kbytes of data
cache (D-cache), using 20 ns static RAM (SRAM) with fixed 8-word
block-refill size

- ASIC Read/Write Buffer with 8-word buffering

- 16 Mbytes of 100 ns DRAM which supports block-mode transfers with
peak data rates of 50 Mbytes per second on writes and 100 Mbytes
per second on reads

The R3000 CPU provides 32 general purpose 32-bit registers, a 32-bit
Program Counter, and two 32-bit registers that hold the results of
integer divide and multiply operations. The R3010 FPC is tightly
coupled to the R3000 CPU and can execute instructions in parallel with
the CPU. The R3010 contains sixteen, 64-bit registers that can be used
to hold single-precision or double-precision values. The MIPS R3000 has
74 instructions while the MIPS R3010 has 20 instructions. However,
since eight of the R3000 instructions are common to R3010 instructions,
there are a combined total of 86 MIPS instructions. The R3000 can
access memory only through simple load/store operations. All MIPS
instructions are 32 bits long. Although there is only a single
addressing mode (base register plus 16-bit signed displacement), there
are numerous individual load and store instructions that can load or
store integer data in sizes 8, 16, and 32 bits with signed and unsigned
extension.

5.1.2 MIPS Compilers. MIPS compilers support six programming languages
including C and Ada. The compiler system has a separate front-end to
translate each language and a common back-end to generate optimized
machine code. Run-time libraries provide language-dependent functions
for each language. The front-ends translate the semantics of each
language into an intermediate representation, called U-code. U-code is
used by several of the common back-end components.

MIPS uses a common global optimizer, called uopt, for all of their
compilers. HIPS categorizes there compiler optimizations into four
different levels. Below is a summary of the different optimization
levels:

Level I - includes peephole and local optimizations
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Level 2 - includes level one optimizations, plus the following global
optimizations: loop-invariant code motion, strength reduction, common
subexpression elimination, and register allocation

Level 3 - includes level two optimizations plus interprocedure
register allocation

Level 4 - includes level 3 optimizations, plus procedure inlining

5.1.2.1 MIPS Ada Compiler.

The MIPS Ada compiler provides two global optimizers, namely uopt
(discussed in section 5.1.2) and OPTIM3.

OPTIM3 is a high leiel global optimizer that performs many classical
code optimizations and several that are specific to Ada. These include
redundant range check elimination and range propagation for elimination
of constraint checking.

Version 3.0 of the MIPS Ada compiler was used in this benchmarking
study. MIPS Ada 3.0 is intended to support the level 2 optlmizations
presented in section 5.1.2. However, although the Ada code compiled
properly using level 2 optimizations, the run-time execution terminated
due to a "segmentation error". Thus, it was necessary to only use level
1 optimizations in compiling the Ada source code.

5.1.2.2 MIPS C Compiler.

The MIPS C compiler used was the 2.11 release. The 2.11 release supports
all of the level 4 optimizations presented in section 5.1.2. In this
study, the MIPS C code was compiled and executed using level 4
optimizations.

5.2 VAX 11/780.

5.2.1 VAX Hardware.

Below is a description in outline form which summarizes the main
features of the VAX 11/780 computer.

- contains a VAX 11/780 processor

- Floating Point Accelerator is optional (used in this study)

- contains an 8 Kbyte cache which hold both data and instructions

contains as addresss translation buffer (cache) which can hold up to
128 virtual-to-physical page-address translations

- contains an 8 byte instruction buffer
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The VAX is the classical example of a Complex Instruction Set Computer
(CISC) architecture, There are over 200 different instructions and 7
basic addressing modes. The instruction set operates on integer,
floating-point, character-strings and packed-decimal strings, and bit
fields. The processor provides 64-bit, 32-bit, 16-bit, and 8-bit
arithmetic; instruction prefetch; and an address translation buffer.
The CPU includes 16 32-bit general purpose registers for data
manipulatuion and the Processor Status Longword for controlling the
execution states of the CPU. The VAX used in this study contained an
optional high performance floating point accelerator (FPA). The FPA is
an independent processor that executes in parallel with the base CPU.
The FPA takes advantage of the CPU's instruction buffer to access main
memory. Once the CPU has the required data, the FPA overrides the
normal execution flow of the standard floating-point microcode and
torces use of its own code. While the FPA is executing the CPU can be
performing other operations in parallel.

5.2.2. VAX COMPILERS. This section describes both the VAX Ada compile and
also the VAX C compiler.

5.2.2.1 VAX ADA COMPILER.

Version 1.5 of the VAX ada compiler was used. The compiler was run with
full optimization with regard to time. This optimization includes both
local and global optimizations similar to those which are performed by
the MIPS compilers discussed in section 5.1.2.

5.2.2.2 VAX C Compiler

The VAX C compiler compiler can perform global and local optimization
by, for example, doing global flow analysis, assigning automatic
variables to register temporaries, and removing invariant computations
from loop, to mention a few. The compiler also does peephole
optimizations on the generated machine code.

Version 2.3 of the VAX C compiler was used in this study and run with
full optimization with regard to time (as opposed to space).
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6. BENCHMARK RESULTS/DISCUSSION.

This section presents the benchmark results obtained by running both the Ada
and C coded FASTPNN benchmark discussed in section 3 using the coding rules
discussed in section 4 on the development systems discussed in section 5.

It is important to reiterate from sections 5.1.2.1 and 5.1.2.2, that the
MIPS C code was compiled and executed using level 4 compiler optimizations
while the MIPS Ada code was compiled with level 1 optimizations. Recall,
that this is due to the fact that MIPS level 3 and 4 compiler optimizations
were not supported in the Ada compiler used (Version 3.0). Further, when
the Ada code was executed using level 2 optimizations a fatal segmentation
error resulted. Thus, only level 1 optimizations could be used for the Ada.

In an attempt to circumvent the discrepancies between the MIPS C compiler
optimizations and the MIPS Ada optimizations, in section 6.2, projections of
Ada execution time are made based upon level 4 compiler assumptions. The
motivation for such a discussion is that eventually level 4 optimizations
will be incorporated in Ada. The level 4 Ada execution time projections are
based upon using the scaling factor associated with the C execution
improvement when going from level 1 to level 4 optimizations. Thus, the
level 4 Ada execution time projections are obtained by multiplying the Ada
level 1 execution time by the C level 4 execution time, and then dividing
this result by the C level 1 execution time.

6.1 Ada Without Checks Versus Ada With Checks

To support the use of exceptions, Ada performs run time checks to determine
whether an exception should be raised. In practice, a clever compiler can
determine that many of the checks can be safely omitted. Nevertheless, a
compiler may continue to generate checks that a programmer knows are
unnecessary, and these checks may make a critical difference in the
execution time of a program. The different run time checks include access
checks, discriminant checks, index checks, length checks, range checks,
division checks, and overflow checks.

To investigate the execution time overhead in performing checks, the FASTPNN
Ada code was executed for both the case where Ada checks were performed and
also the case where all Ada checks were suppressed (no checks).

Figure 8 contrasts the execution efficiency of the Ada code run for the case
where Ada run-time checking was performed versus the case where run-time
checking was suppressed. Figure 8 indicates that Ada run-time checks
imposes a significant penalty on the execution efficiency of the Ada for
both the VAX and the MIPS. On the VAX, the PNN execution time goes from
approximately 25 seconds with checks off to approximately 36 seconds with
checks on. This corresponds to a 43% increase in time for performing checks
on the VAX. On the MIPS, the execution time goes from approximately 2.4
seconds with checks suppressed to 4 seconds with checks preformed. This
corresponds to a 65% increase in time for performing checks on the MIPS.
Thus, the relative penalty for performing Ada run-time checks is moderately
higher for the MIPS than for the VAX.
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6.2 C Versus Ada

Figure 9 contrasts the execution efficiency of the C code with the Ada
code. The relative efficiency of C versus Ada depends on which machine
the code is executed on. If the code is executed on the VAX, than the
Ada executes more efficiently than the C. For the case of the VAX, the
Ada executes approximately 39.5% quicker than the C when Ada checks are
suppressed and 13.3% quicker than the C when Ada checks are performed.
On the other hand, if the code is executed on the MIPS the C code runs
quicker than the Ada code. For the MIPS, the C code runs approximately
40% quicker than the Ada code when Ada checks are suppressed and 114%
quicker than the Ada code when Ada checks are incorporated.

Figure 10 contrasts the execution efficiency of Ada versus C for the
case where level 4 Ada compiler optimizations are projected using the
scaling technique discussed in section 6. Note from Figure 10 that the
Ada execution time for the case where Ada checks are not incorporated is
nearly identical to the C execution time.

Based on Figures 9 and 10 it is concluded that there is little or no
difference between the inherit execution efficiency of Ada (without checks)
and that of C. The actual execution efficiency of Ada versus C is driven by
the maturity of the compilers used in the comparison. With regard to the
MIPS, the fact that the C code runs quicker than the Ada is attributed to
the fact that the present MiPS Ada compiler is not as mature as the MIPS C
compiler. This is because the MIPS Ada compiler was run with level 1
compiler optimizations while the MIPS C compiler was run using level 4
compiler optimizations. Figure 10 indicates that eventually when the MIPS
Ada compiler matures to the level of the C compiler, the Ada code will
execute in nearly identical efficiency (time) as the C code.

The fact that the Ada code on the VAX executes more efficiently than the
C ode on the VAX is attributed to the hypothesis (this was not proven

Lhis study) that the VAX is le~s efficient than the MIPS in
oriaing dynamic allocation. Thus, in the case of Ada, where the

1, -istrained array was used in replacement to performing dynamic array
ai.Lcation using access types, the resulting Ada code was more efficient
than the C code where dynamic allocation had to be performed. On the
MIPS, however, where dynamic allocation is performed more efficiently
this _fference between Ada and C was nullified.

6.3 MIPS Versus VAX

By far the most common method used to gauge the performance of a particular
machine is to measure its performance relative to the VAX 11/780. A ratio,
expressed in terms of VAX MIPS, is obtained by dividing the time required to

execute a given benchmark on the VAX versus the time to execute that same
benchmark on a different computer. This ratio is used to express the
machine's performance relative to the VAX; the higher the ratio, the better
the machine's performance. Figure 11 contrasts the execution efficiency of
the MIPS MAGNUM 3000 with the VAX 11/780. Note from Figure 11 that the
ratio of MIPS execution time versus VAX execution time is highly dependent
on whether Ada or C is used. If C is the language, then the ratio is
approximately 22.2 VAX MIPS. If Ada is the language the MIPS ratio
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drops off dramatically and is dependent, to a small degree, on whether
Ada is run with run-time checks or without run-time checks. If Ada is
run without checks than the ratio is approximately 10.3 VAX MIPS. In
the case where Ada is run using run-time checks, the ratio reduces to
approximate]y 9.0 VAX MIPS.

The above results indicate that the MIPS MAGNUM 3000 is somewhere
between 9 to 22.2 times faster than the VAX 11/780, with the variance in
ratio attributed to the compiler. Since C compilers are more mature
than Ada compilers, it is concluded that the C run time results are a better
indicator of inherit machine performance than the Ada run time results.
Thus, it is concluded that the actual speedup of the MIPS over the VAX is
reflected most accurately by the C VAX ratio of 22.2 VAX MIPS.

6.4 MIPS Profiler Results

The purpose in profiling is to help identify the areas of code where most of
the execution time _s spent. In the typical program, execution time is
disproportionally spent in relatively few sections of code. Having
identified these critical sections of code, it is profitable to improve
coding efficiency in those sections.

The results presented in this section were obtained by using the MIPS UNIX
profiler. In both the C and Ada case, the profiler output statistics assume
100% cache hits. For each subroutine in PNN, the profiler outputs the
following statistics: the total number of cycles used by that routine
(CYCLES), the percentage of cycles the routine uses with respect to the
total number of program cycles (%CYCLES), the cumulative percentage of
cycles (CUM%), the total number of times each routine is called, and the
number of cycles used by the routine per call (CYCLES/CALL). Note that
there is a direct relation between cycles used and execution time; simply
divide the cycles used by the clock freqency (25 MHz) to get the actual
time.

Since the profiler results presented in this section are categorized by
subroutine, a brief description of the seven most time consuming subroutines
contained in FASTPNN are presented in Table 4. Table 4 can be used to gain
insight into the time breakdown of the FASTPNN routines in terms of
computational functionallity.

6.4.1 C Profiler Results

In this section the profiler was run on the FASTPNN C code using level 2
compiler optimizations. Table 5 summarizes the profiler results for the
seven most time consuming subroutines in FASTPNN. Table 5 lists the seven
routines in descending order corresponding to their overall contribution
with regard to cycles used in the execution of FASTPNN. Note fron Table 5
that the seven routines account for approximately 89% of the total cycles
used in the entire FASTPNN algorithm. The routine which accounts for the
greatest percentage of cycles (time) is GetBucketStats. From Table 4 one
can see that GetBucketStats is concentrated on basic floating point
mathematics in performing mean and variance calculations. The first four of
the routines listed in Table 5 account for over 80% of the total cycles
used. Also note from Table 5 that routine Indxx is by far the most time-
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consuming routine with regard to the number of cycles required on a per call
basis, requiring over 970.000 cycles per call. But because Indxx is only
called twice, it accounts for just approximately 4.5% of the total cycles
used.

6.4.2 Ada Profiler Results

In this section the profiler was run on the Ada code using level 1
compiler optimizations and suppressing all Ada run time checks. Table 6
summarizes the profiler results for the seven most significant
subroutines in FASTrNN. Table 6 lists the seven routines in descending
order corresponding to their overall contribution with regard to cycles
used in the execution of FASTPNN. Note from Table 6 that the seven routines
account for approximately 94% of the total cycles used in the entire PNN
algorithm. The routine which accounts for the greatest percentage of
cycles (time) is SplitBucket. From Table 4 one can see that SplitBucket
is computationally intensive in the areas of recursive calling, linked
list manipulation, and conditional branching. The first four of the
routines listed in Table 6 accounts for over 84% of the total cycles
used in FASTPNN. Also note from Table 6 that routine Indxx is by far
the most time consuming routine on a per call basis requiring
approximately 1.3 million cycles per call.

6.4.3 Ada Versus C Profiler Results

Table 7 contrasts the performance of the Ada profiler results with the C
profiler results for each of the main routines listed in the previous
two sections. The seven routines are presented in alphabetical order in
Table 7. Table 7 displays the amount of cycles used by each routine,
the relative percentage of cycles that the routine contributes to the
entire FASTPNN cycle count, and a ranking of each routine corresponding
to its relative contribution of cycles used. With the exception of
routine Assesscandidate, the results displayed in Table 7 are consistent
from the standpoint that the Ada routines use more cycles than the C
routines. In the case of AssessCandidate, the C requires more cycles
than the Ada. With the exception of routines SplitBucket and
GetBucketStats, the relative ranking of the individual routines for C
versus Ada is also consistent. In the case of routine SplitBucket,
SplitBucket is the most time consuming routine (rank 1) in the case of
Ada while, in the case of C, SplitBucket is the second most time
consuming routine (rank 2). In the case of routine GetBucketStats,
GetBucketStats is the second most time consuming routine (rank 2) in the
case of Ada, while GetBucketStats is the most time consumirg routine
(rank 1) in the case of C.

The last row of Table 7 shows the total cycles from the seven routines
combined and the cumulative percentage of cycles this sum comprises of
the overall cycles used in the FASTPNN execution. Note, that the total
cycles used by the Ada exeeds the total cycles used by the C code. This
result is consistent with the execution resdlts previously displayed in
Figure 9.
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7.0 PROJECTED FASTPNN REAL-TIME REQUIREMENT

The goal of this section is to motivate a PASTPNN real time requirement. The
basic strategy used in motivating the FASTPNN real time requirement derived in
this section is outlined below:

A. First, determine the MBV real time requirement/goal (how many
targets need to be recognifzed in how many seconds?)

B. Next, determine what percentage of time an MBV system will be
spend on FASTPNN

C. Last, multiply the percentage of time spent on FASTPNN (B above) by
the overall MBV real-time requirement (A above). FASTPNN must then be able
to complete its execution in this derived interval of time

There is currently a program sponsered by the Air Force called Automatic
Radar Air-to-Ground Acquisition Program (ARAGTAP) which is focused on
establishing a real-time MBV capability. The ARAGTAP goal is to
identify 20 to 40 objects (targets) from a high resoltion SAR image in
approximately 7 seconds. If we conservatively assume a 20 to 30% alarm
rate, this requirement translates to identifying approximately 50 chips
(of which 20 to 40 may be actual targets) that range in size from 64 x
64 pixels to 128 x 128 pixels in 7 seconds.

Step B in our strategy to determine a FASTPNN real-time requirement is to
determine the relative percentage of the time that the MBV algorithm
will spend on FASTPNN. A heuristic reasoning process was used to estimate
that FASTPNN should account for approximately 1.86% of the total MBV
processing time. The heuristic reasoning process included the following
assumptions:

- 10% of MBV should be spent on prescreening/detection and the
other 90% should be spent on recognition

- of the remaining 90% of the time spent on recognition, 25% of
the processing time should be spent on information extraction algorithms
and 75% should be spent on classification/matching algorithms

- of the 25% of the time spent on information extraction,
8.25% of this time should be spent on the FASTPNN algorithm.

Mathematically combining all of the above assumptions (by multiplying),
it is found that the FASTPNN algorithm accounts for approximately 1.86% of
the total MBV execution time.

Since we are assuming that 50 chips must be processed in 7 seconds, it is
determined that the FASTPNN algorithm must be able to process a single chip
(as was done in this study) in .0026 seconds.

In section 6 the best case FASTPNN execution time was 1.87 seconds; this is
nearly 3 orders of magnitude slower than the FASTPNN real-time requirement
previously derived in this section.
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8.0 FASTPNN/PNN IMPLEMENTATION CONSIDERATIONS

Based upon the discussion in section 7, it is evident that FASTPNN execution
efficiency must be greatly increased if it is to function within real-time
MBV constraints.

In section 2.1 it was shown that FASTPNN had compuational requirements
that are O(NLOGN) while the full search PNN had computational
requirements O(N**2). The fact that the full search algorithm is
O(N**2) and that FASTPNN is O(NLOGN) does not necessarily imply that
FASTPNN will execute more quickly than full search PNN over all input
data sets. In fact, for up to relatively large data set sizes, N, it is
highly conceivable that the full search implementation PNN will execute
more efficiently than FASTPNN. This is attributed to the fact that
there are initializations and other overhead associated with the FASTPNN
algorithm. However, as N gets very large, the volume of calculations
associated with the full search implementation will dominate all
overhead associated with FASTPNN, and the full search implemetation will
run slower than FASTPNN. A logical question to ask is: "for a given
data set size which implementation of PNN should one use"? For the sake
of convenience we will designate the parameter BREAK EVEN N to refer to
the data set size, N, where the execution time of FASTPNN-and full
search PNN would be equal. It will be understood that for N <
BREAK EVEN N, the full search implementation will run quicker than
FASTPNN, and for N greater than BREAK EVEN N, the full search
implementation will run slower than FASTPNN.

It is important to emphasize that BREAK EVEN N does not indicate the
data set size where both implementations of PNN are equally as good.
Given equal execution time for both implementations of PNN, the full
search implementation of PNN is superior to FASTPNN since the resulting
quantization vectors are optimum. In fact, it is logical to assume that
significant computational savings must be obtained to warrant the use of
FASTPNN over the full search implementation.

One strong disadvantage of the full search PNN is the large memory
requirement which would be required if a large input data set size is
used. For example, it was shown by example in section 2.1 that if the
input data set contains 1000 entries, then 499,500 distance calculations
would be required to be computed in the first iteration. If each
distance calculated were to be stored in one word, then this requirement
translates to nearly two megabytes of memory.

Intuitively, the parameter BREAK EVEN N is dependent on the actual
architecture used in executing tho PNN algorithm. In this study, where
benchmarking was performed on general purpose data processors it was
assumed (but not demonstrated) that, for the given input data set,
FASTPNN was more time efficent than full search PNN. However, if one
were to consider executing the PNN algorithm on a signal processor (as
opposed to a data processor), the choice between choosing the full search
implementation of PNN versus FASTPNN could certainly be altered. A
signal processor will be defined, in the context of this section, as a
processor specifically designed to perform sequences of
computations/operations unaffected by actual data values. Since a signal
processor is more suited to do the brute force, less decision intensive,
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calculations required by the full search PNN compared to the more data
dependent calculations of FASTPNN, than it is logical to conclude that

the full search PNN will exhibit higher execution efficiency over a
larger range of input data size.

Figure 12 is used to illustrate the points made in the above paragraphs.
Figure 12 shows four hypothetical curves which are used to contrast the
execution efficiency of FASTPNN versus full Search PNN for both a data
and signal processor as a function of input data set size, N. The four
curves include : (1) the execution time of FASTPNN on a signal processor

as a function of N; (2) the execution time of FASTPNN on a data
processor a a function of N; (3) the execution of FASTPNN on a signal
p-ocessor as a function of N, and (4) the execution of full search PNN
cq a signal processor as a function of N. Figure 10 shows that for
small values of N, for both the signal and data processor
implementation, the full search implementation of PNN is more efficient
than FASTrNN. But, for both the data and signal processor alike, as N
gets large, FASTPNN eventually exhibits higher execution efficiency than
the full search implementation of PNN. Note from Figure 12 that
BREAK EVEN N for the data processor occurs for a much smaller input data
size, than it does for the signal processor. Also note from Figure 12,
that the data processor displays slightly better execution efficiency
than the signal processor for all values of N in executing FASTPNN. But
in executing the full search implementation of PNN, the signal processor
significantly outperforms the data processor for all values of N.
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9. CONCLUSIONS

9.1 Ada With Checks Versus Ada Without Checks

Ada run-time checks impose a significant penalty on Ada execution
efficiency for both the MIPS and the VAX. On the VAX there was a 43%
relative time "penalty" (increase in time) associated with performing
run-time checks, while on the MIPS, there was a 65% time penalty
associated with performing run-time checks.

9.2 C Versus Ada

There is no inherit execution efficiency advantage of C over Ada or vice
versa. The comparison of C versus Ada depends on the relative maturity
of the compilers used. For instance, on the MIPS Magnum 3000, the C
code executes more efficiently than the Ada code. While on the VAX, the
Ada code executes more efficiently than the C code. Thus, the resulting
conclusion is that for the MIPS Magnum 3000, the C compiler is more
mature than the Ada compiler, while for the VAX 11/780 the Ada compiler
is more mature than the C compiler.

9.3 MIPS Magnum 3000 Versus VAX 11/780

Depending on the language used in the comparison, the MIPS Magnum 3000

time) than the VAX 11/780. When Ada was the language compared on both
machines, the MIPS executed 9 times faster than the VAX. When C was the
language, the MIPS executes 22 times faster thai, the VAX. The
descrepancy between C and Ada indicate that the relative efficiency of
MIPS C over VAX C is larger than the efficiency of MIPS Ada over VAX
Ada.

9.4 FASTPNN/ i Real-Time Implementation Considerations

The best case FASTPNN execution time obtained from executing the C coded
algorithm on the MIPS Magnum 3000 is estimated to be approximately 3
orders of magnitude too slow for real time use. Specialized signal
processor hardware will be required to boost the execution efficiency
of FASTPNN to real time performance levels. When using specialized
signai processor hardware, it may be advantageous to implement the full
search PNN algorithm. The brute force, less decision intensive
calculations required by the full search PNN algorithm make it more
suitable for s 40nal essoc hardware application than the FASTPNN
algorithm . • •2 .. oice of algorithm implementation is dependent on
the input data set size, a study should be performed to determine which
implementation is best for a given input data set size. Given equal
execution times for both the full search PNN implementation and the FASTPNN
implementation, the full search implementation is preferred since it
provides the more accu '- results.
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#include "timer.h"
#include "fastpnn.h"
#include <stdio.h>

float *FastPNN (float *means, float *weights, int count,
int dim, int ncntrds);

Main(int argc, char *argv[1)
/*

* Function name:
* main

* Purpose:
* Function Main is the driver routine for the Fast Pairwise
* Nearest Neighbor Clustering Algorithm (FASTPNN). This routine
* calls routines to perform the timing of the FASTPNN algorithm.
* This routine uses command line arguments to pass parameters to
* itself when it begins executing. At the command line, the user
* enters the program name followed by the following parameters:
* the input file name, the output file name, and the number of
* input vectors.
*/

float *results;
float *positions;
float *weights;
float a,b,c;
int count;
int dim;

int ncntrds, i, j, k;

int loopcount = 1;
int initialdummytime, dummy arg, dummyelapsedtime;
int init fastpnn_.time, fastpnn elapsed time;
float fastpnniteration time;
int vector count;
int weight count;
int positioncount;

FILE *fptin;
FILE *fptout;

i = 0;
j = 0;

fpt_in = fopen(argv[1], "r");
fptout = fopen(argv[2], "w");
vector count = atoi(argv[3], "r");
position_count = 2 * vectorcount;
ncntrds = 4;

positions = (float *)calloc(position count, sizeof(float));
weights = (float *)calloc(vector count, sizeof(float));

while (feof(fptin) == 0) {
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fscanf (fpt_in, Of Af %f", &a, &b, &c);
positionsti4+J1 a;
Positionsli++1 = b;
weightsij++] = c;

count vector-count;
dim =position count/vector count;
printf("enter fas'cnn~n");

initial dummy_time = init timero;
printt("'got initial dummy time\n"');
for 0i=O; i<loup-count; i++~)

dummy_arg = identity(dummyarg);

dummy elapsed_time = elapsed time(initial dummy time);
printf('"dummy_elapsed-time = %d", dummy_elapsed tine);

init-tastpnn time = initI timero;
for 0i=O; i<loop count; I++*)

results = FastPNN(positions, weights, count, dim, ncntL-ds);
dummy_arg =identity(dummy-arg);

fastpnn_elapsed_time = elapsed time(init fastpnn_time);

fastpnri_iteration time = (fastpnn_elapsed-time - dummy-elapsed_time)/
loop_count;

fprintf(fpt out, "Fastpnn executed in Af", fastpnn iteration time);
fprintf(fpt out, "microseconds\n");
fprintf( fpt out, "Returned results\n");
printarray(results, dim, ncntrds);
fclose(fpt_out);

int printarray(float *array, mnt dim, int count)

int i, j, kW

for (i=O, k=O; i != count; i++)(
printf(' ('');

for (j=O; j != din; j++, k++)(
printf("Zf', array~kJ);
if (j != dim -1)

printf("")
else

printf(")\n");
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/* This is the header file, "Fastpnn.h", which contains the
"* data structure definitions, function prototype definitions, and
"* symbolic name definitions for the FastPNN C program */

#ifndef FastPNN
#define _FastPNN-

#ifndef TRUE
#define TRUE -1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#define KDNODE 0
#define KDBUCKET I

#define KDMEMERR "lKD tree memory allocation error\n"

#define BUCKETSIZE 8 /* Number of entries per bucket

#define KDMERGE 0.5 /* Fraction of buckets merged */

#define APTR (char *)

struct kdentry {
struct kdentry **next; /* k dimensional linked list pointers */
int splitleft; /* flag used for bucket splitting */
float weight; /* Weight assigned to this entry */
float *mean; /* k dimensional sample point data */
float *wmean; /* k dimensional weighted sample data */
float *wsqmn; /* k dim. weighted square sample data */

struct kdnode {
int dindx; /* Dimension index */
struct kdelem *lower; /* Pointer to kdelems below thresh */
struct kdelem *upper; /* Pointer to kdelems above thresh */

struct kdbucket (
int count; /* Cardfnality of bucket entries */
struct kdentry **lists; /* Pointers to sorted data linked list */
struct kdentry *entrya; /* First element of candidate pair */
struct kdentry *eaitryb; /* Second element of candidate pair */
float distort; /* Distortion induced by merging pair */1;

struct kdelem {
int type; /* value of KDNODE or KDBUCKET */
union [ /* node or bucket union */

struct kdnode node;
struct kdbucket bucket;

I norb;

A-4



struct kdtree (
int dim; /* Dimension of tree entries
struct kdelem *root; /* Pointer to first kd tree element */
int nbuckets; /* Number of terminal nodes *1
int nentries; /* Total number of sample points */

#endif

void fatal message(char string(]);
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#include "fastpnn.h"

float *FastPNN (rneans,weights,count,dim,ncntrds)

float *means, *weights;
int count, dim, ncntrds;

/*

* Function name:
* FastPNN

* Purpose:
* Main routine for the Pairwise Nearest Neighbor clustering algorithm

* Input arguments:
* means - sample point array
* weights - sample weight array
* count - number of samples
* dim - dimensionality of the sample data
* ncntrds target number of clusters to form from the data

* Output arguments:
* None

* Returns:
* STACK - array of clusters
*/

{
struct kdentry *entry;
struct kdtree *tree, *BuildKDtree);
float *centroids;
void MergeDownKDtree), DestroyKDtree);

/* char *calloc(; */
int i, j, k;

if (I(centroids = (float *)calloc((unsigned)ncntrds*dlm,sizeof(float))))
fatal_message(KDMEMERR);

tree - BuildKDtree(means,weights,count,dim);

MergeDovnKDtree(tree,ncntrds);

entry - tree->root->norb.bucket.lists(O];
for (i=O,k=O; i!=ncntrds; i++,entry=entry->next[0])

for (J=0; j!=dim; j++,k++)
centroids[k] = entry->mean[j];

DestroyKDtree(tree);

return(cerntroids);

)
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#include "fastpnn.h".

struct kdtree *BuildKDtree(means,weights,count,dim)

float *means, *weights;
int count, dim;

/*

* Function name:
* BuildKDtree

* Purpose:
* Constructs an initial kD tree from the sample data

* Input arguments:
* means - sample point array
* weights - sample weight array
* count - number of samples
* dim - dimensionality of the sample data

* Output arguments:
* None

* Returns:
STACK - pointer to a kD tree

struct kdtree *tree, *CreateKDtreeo;
struct kdelem *CreateFirstBucket(;

tree = CreateKDtree(dim);
tree->root = CreateFirstBucket(means,weights,count,dim);
tree->nbuckets = 1;
tree->nentries = count;

return(tree);
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#include "fastpnn.h"

struct kdtree *CreateKDtree(dim)

int dim;

/*

* Function name:
* CreateKDtree

* Purpose:
* Allocates storage for a kD tree data structure

* Input arguments:
* dim - dimensionality of the tree data

* Output arguments:
* None

* Returns:
* STACK - pointer to a kD tree
*/

struct kdtree *tree;

if (](tree = (struct kdtree *)calloc((unsigned)i,sizeof(struct kdtree))))
fatal-message(KDMEMERR);

tree->dim = dim;

return(tree);
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#include "fastpnn.h"

void DestroyKDtree(tree)

struct kdtree *tree;

* Function name:
* DestroyKDtree

* Purpose:
* Destroy a kD tree* 

I
* Input arguments:
* tree - pointer to the kD tree

* Output arguments:
* None* I
* Returns:
* Nothing
*/

void DestroyLastBucket(;

if ('ree->root)
DestroyLastBucket(tree->root);

cfree((char *)tree);

A-
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#include "fastpnn.h"

struct kdelem *CreateFirstBucket (means, weights, count, dim)

float *means, *weights;
int count, dim;

* Function name:
* CreateFirstBucket
*

* Purpose:
* Create and initialize the first bucket in a kD tree
*
* Input arguments:

means - sample point array
* weights - sample weight array
* count - number of samples
* dim - dimensionality of the sample data

* Output arguments:
* None

* Returns:
* STACK - Initialized bucket

struct kdelem *bucket, *CreateKDbucketo;
struct kdentry *kdptr, *lptr, *CreateKDentryo);
void SortBucketo;
int i, j, k;

bucket = CreateKDbucket(dim);
bucket->norb.bucket.count = count;

for (i=O,k=O; i!=count; i++) (
kdptr = CreateKDentry(dim);
kdptr->weight = weightsli];J
for (j=0; jl=di',; j++,k++) (

kdptr->mean[j] = means[kj;
kdptr->wmean[j] = kdptr->mean[J] * kdptr->weight;
kdptr->wsqmn[j] = kdptr->mean[j] * kdptr->wmean[j];

I
if (!i) (

bucket->norb.bucket.lists[O] = kdptr;
lptr = kdptr;

}
else {

lptr->next[OJ = kdptr;
iptr = kdptr;

SortBucket (bucket,dim);
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ret,. :n(buck-et);
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#include "fastpnn.1h"

struct kdelem *CreateKflbucket(dim)

int dim;

*Function name:
* CreateKDBucket

*Purpose:

* Create a bucket for a kD tree

*Input arguments:
* dim - dimensionality of the sample data

*Output arguments:
* None

*Returns:

* STACK - Newly created bucket

struct kdelem *bucket;
/* char *cailoco; */

if (1Kbucket = (struct kdelem *)calloc((unsigned)1,sizeof(struct kdelenz))))
fatal_message(KDMEMERR);

if (I(bucket->norb.bucket.lists -(struct kdentry*)
calloc((unsigned)dim,sizeof(struct kdentry*))

fatal~message(KDMEMERR);

bucket->type = KDBUCKET;

return(bucket);
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#include "fastpnn.h"

void DestroyLastBucket (bucket)

struct kdelem *bucket;

* Function name:
* DestroyLastBucket

* Purpose:
* Destroy the last bucket in a tree

* Input arguments:
* bucket - bucket to be destroyed
*

* Output arguments:
* None

* Returns:
* Nothing
*/

(
void DestroyKDbucket(), DestroyKDentryo;
struct kdentry *entry, *next;

entry = bucket->norb.bueket.lists[O];
while (entry) [

next ý entry->next[O];
DestroyKDenry(entry);
entry = next;

DestroyKDbucket(bucket);
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#include "fastpnn.h"

void DestroyKDbucket (bucket)

struct kdelem *bucket;

/'*

* Function name:
* DestroyKDBucket

* Purpose:
* Destroy a kD tree bucket

* Input arguments:
* bucket - bucket to be destroyed

* Output arguments:
* None

* Returns:
* Nothing
*/

cfree((char *)bucket->norb.bucket.lists);
cfr.ee((char *)bucket);
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#include "fastpun.h"

struct kdentry *CreateKDentry (dim)

int dim;

*Function name;
* CreateKDentry

*Purpose:

* Create a kD tree bucket entry for holding a sample point

*Input arguments:
* dim - dimenisionality of the sample data

*Output arguments:
* None

*Returns:

* STACK - pointer to a bucket entry

struct kdentry *entry;
IAChar *Call'OCO)i A/

if (!(entry -(struct kdentry *)calloc((unsigned)l,sizeof(struct kdentry))))
fatal._message(KVMEMERR);

if (!(entry->next - (struct kdentry*)
calloc((unsigned)diin,sizeof(struct kdentry*))

fatal wessage(KDMEMERR);
if (!(entry->mean = (float *)calloc((unsigned)dim,slzeof(float))))

latal message(KDMEMERR);
if (!(entry->wmean = (float *)calloc((unsigned)dim,sizeof(float))))

fatal message(KDMEMERR);
if (!(entry->vrsqmn - (float *)calloc((unsigned)dim,sizeof (float))))

fatal-message(KDNENERR);

return(entry);
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#include "fastpnni.h"

void DestroyKDentry (entry)

struct kdentry *entry;

/*

* Function name:
* DestroyKDentry

* Purpose:
* Destroy a kD tree bucket entry
,

* Input arguments:
* entry - pointer to the entry to be destroyed
,

* Output arguments:
* None

* Returns:
* Nothing
*/

if (entry) (
cfree((char *)entry->next);
cfree((char *)entry->mean);
cfree((char *)entry->wmean);
cfree((char *)entry->wsqmn);
cfree((char *)entry);
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#include "fastpnn.h"

struct kdelem *CreateKDnode()

/*
* Function name:
* CreateKDnode

* Purpose:
* Create a kD tree node

* Input arguments:
* Nothing

* Output arguments:
* None

* Returns:
* STACK - pointer to the newly created kD tree node

(
struct kdelem *node;
/* char *calloco; */

if (!(node = (stiuct kdelem *)calioc((unsigned)i,sizeot(struct kdelem))))
fatal message(KDMEMERR);

node->type = KDNODE;

return(node);

A
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#include "fastpnn.h"

void DestroyKDnode(node)

struct kdelem *node;
1*•

* Function name:
* DestroyKDnode

* Purpose:
* Destroy a kD tree node

* Input arguments:
* node - pointer to the entry to be destroyed

* Output arguments:
* None

* Returns:
* Nothing
*/

if (node)
cfree((char *)node);
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#include "fastpnn.h"

void SortBucket (elem,dim)

struct kdelern *elem;
int dim;

*Function namei
* SortBucket

*Purpose:

* Sort the entries in a kD tree bucket across each dimension separately

*Input arguments:
* elem - pointer to the bucket containing the entries to be sorted
* dim - dimensionality of the sample data

*Output arguments;
* None

*Returns:

* Nothing

struct kdentry *entry, **epbffr;
void indxxo;

1* char *calloco; *
mnt i, j, count;

count = elem.->norb.bucket.count;

if (!(epbffr = (struct kdentry **)calloc((unsignee)count,

fatal-message(K.DMEMERR); iefsrckdny

for (i=O; il=dim; i.++)
for (JwO,entry=elem->norb.bucket.lists[OJ; jI-count; J++i) I
epbffrlj] = entry;
entry =entry->next[O];

indxx(epbffr,&i);
elem->norb-bucket.liststil = epbffr[O];
for (J-1; j<count; j++~)
epbffr~j-l]->next~i] = epbffrljl;

epbffrll[count - 1JJ->nextlil = (struct kdentry *)O;

cfree((char )bffr);
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#include "fastpnn.h"

void indxx(kdentry **epbfrr,int *i)

/*

* Function name:
• indxx

* Purpose:
* Sort an array of indices indx based on the data arrin using an indexed
* version of a heap sort. Modified from Numerical Recipes indexx.

* Input arguments:
* arrin - array of data used for sorting
* n - number of entries in arrin

* Output arguments:
S indx - Indices specifiying the order of data in arrin

* Returns:
* Nothing

,/

{
int l,j,ir,indxt,i;
float q;

for (j=O;j<n;j++)
indx[j] =j;

S= n >> ;
ir = n - 1;

while (TRUE) {
if (I > 0)

q = arrin[(indxt=indx[--l]Y];
else (

q = arrin[(indxt=indx[ir])I;
indx[irl=indx[O];
if (--Jr == 0) (

indx[O]=indxt;
return;

}
I

i = 1;
j ((1 + l)'< 1) - 1;

while (j <= jr) {
if (j < ir && arrin[indx[jJ] < arrin[indxfj+l1])

j +-+;
if (q < arrin[indx[j]i) {

Indx[i]=indxlj];
j +- ((i=j) + 1);
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else j=iri1;

indxl Iiridxt;
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#include "fastpnn.h"

void MergeDownKDtree(tree,nentrds)

struct kdtree *tree;
int ncntrds;

*Function name:
* MergeDownKfltree

*Purpose:

* Reduce a kD tree to a single bucket having ncntrds entries using the PNN
* algorithm

*Input arguments:
* tree - pointer to a kD tree
* ncntrds - desired number of entries after merging

*Output arguments:
* None

*Returns:

* Nothing

void CompressKDtreeo, BalanceKDtreeo;
struct kdelem *Collapsegjjnodeo;
int nmerge, ntile, maxbkts;
struct kdelem **bcktarray;
/* char *callocoI; */

maxbkts = tree->nemtries / (BUCKETSIZE / 2);

if (!(bcktarray =(struct kdelem **)calloc((unsigned)maxbkts,
sizeof(struct kdelem*))

fatal-message(KDMENERR);

while (tree->nentries > nentrds)
BalanceKDtree( tree,bcktarray);
ntile = (KDMERGE * tree->nbuckets > 1) ? KDI~ERGE * tree->nbuckets :1;
nmerge =((tree->nentries - ncntrds) < ntile) ?

(tree->nentries - ncntrds) : ntile;
CompressKDtree( tree,nmerge,bcktarray);

if (tree->root-->type =ýKDNODE)
tree->root = CollapseKDnode( tree->root, tree->dim,&tree->nbuckets);

cfree( (char *)bcktarray);
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#include 'fastpnn.h"

void BalanceKDtree( tree, bcktarray)

struct kdtree *tree;
struct kdelem **bcktarray;

*Function name:
* alanceKDtree

*Purpose:

* Redistribute the entries in a UD tree so that each bucket has
* approximately the same number of entries

*Input arguments:
* tree - pointer to a kD tree

*Output arguments:
* bcktarray - array used to retain a pointer to each bucket after balancing

*Returns:

* Nothing

struct kdelem *CollapseKDnodeo, *SplitBucket(), **bptr;
float *mean, *vvar;
1* char *calloco; *

if (!(mean = (float *)calloc((unsigned)tree..>dim~sizeof(float))))
fatal_message(KDHEMERR);

if (!wvar =(float *)calloc((~unsigned)tree..>dim,sizeof(float))))
fatal_message(KDMEMERiR);

if (tree->root->type -= KDNODE)
tree->root = CollapseKDniode(tree->root,tree-->dim,&tree->nbuckets);

bcktarray[OJ = tree->root;
bptr . &bcktarrayll';

tree->root =
Spli~tBucket~tre-e->root,tree-->dim,&tree->nbuckets,&bptr,mean,wvar);

cfree((char *)mean);
cfree((char *)wvar);
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#include "fastpnn.h"

struct kdelem *CollapseKDnode(elem,dim,bctr)

struct kdelem *elem;
int dim, *bctr;

*Function name:
* CollapseKDnode

*Purpose:

* Recursive function used to collapse the entries in a kD tree into a
* single bucket

*Input arguments:
* elem -pointer to a kD tree node to be collapsed
* dim -dimension of the data within the tree

*Output arguments:
* bctr - pointer to a counter used to keep track of the total number

* of buckets in the tree

*Returns:

* STACK - pointer to the bucket resulting from the collapse

struct kdentry **entptr, *lentry, *rentry;
struct kdelem *bucket;
void Des troyKDnodeo, DestroyK~bucketo;
mnt i;

if (elem->norb.node.lower->type != KDBUCKET)
elem->norb.node.lower =CollapseKDnode(elem->norb.node.lower,dim,betr);

if (elem->norb.node.upper-->type 1= KDBUCKET)
elem->norb.node.upper = CollapseKDnode(elem->norb.node.upper,dim,bctr);

bucket = elem->norb.node.lower;

for (i-0; i!=dim; i++)(
entptr = &(elem->norb.node.lower-->norb~bucket.listsli]);
lentry = elem->norb.node.lower-->norb.bucket.llststi];
rentry = elem->norb.node.uipper->norb.bucket.listslji];
while (lentry && rentry) (
if (lentry->mean(i] < rentry->mean[i])

*efltptt = lentry;
entptr =&(1.entrv->next[i]);
lentry = lentry->next[i];

else I
*entptr = rentry;
entptr = &(rentry->nex-t[il);
rentry = rentry->next[i];

A-24



if (Ilentry)(
'While (lentry)

*entptr = lentry;
entptr = &(lentry->next(iJ);
lentry =lentry->next[i];

if (rentry)
while (rentry)

*erktptr =rentry;
entptr = &(rentry->ne~ctjiJ);
rentry = rentry->next[i];

bucket->norb.bucket.count = elem->norb.node.lower->norb.bucket.count +
elem->norb nodie. upper->ncrb. bucket count;

DestroyKDbucket(elein->norb.node.upper);
DestroyKDnode (elem);
(*bctr) -- ;

return(bucket);

A-25



#include "fastpnn.h"

struct kdelem *SplitBucket(oldbucket,dim,bctr,bptr,mean,wvar)

struct kdelem *oldbucket, ***bptr;
int dim, *bctr;
float *mean, *wvar;

* Function name:
* SplitBucket

• Purpose:
* Recursive function used to split a kD tree bucket into two smaller
* buckets having half as many entries

• Input arguments:
• oldbucket - pointer to kD tree bucket to be split
* dim - dimension of the data within the tree
* mean - scratch array used for calculating bucket means
* wvar - scratch array used for calculating bucket weighted variances

* Output arguments:
* bctr - pointer to a counter used to keep track of the total number
• of buckets in the tree
S* bptr - pointer to an array of pointers to buckets in the tree

I*

* Returns:
• STACK - pointer to the node resulting from the split, or the original
• bucket if the number of entries in the bucket is small enough

struct kdelem *newnode, *newbucket, *CreateKDbucket);
struct kdentry **oldptr, **newptr, *entry;
int i, j, bcount, medindx;
void GetBucketStatso;

if (oldbucket->norb.bucket.count > BUCKETSIZE) [

GetBucketStats(oldbucket,dlm,mean,wvar);

for (i=l,j=O; i<dim; i++)
if (wvar[il > wvar[j])

j i

bcount = oldbucket->norb.bucket.count;
medindx = (bcount + 1) / 2; /* Uneven splits go left */

newnode = CreateKDnode);

newnode->norb.node.dindx = j;

newbucket = CreateK.Dbucket(dim);

newnode->norb.node lower = oldbucket;
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newnode->florb. node .up per newbucket,

( rbct) ++.;

(**bprr) = newbucket;
( *bptr) ++;

for (i=O, entry=oldbucket-Onorb.bucket.listsljJ"; i<medindx; i-.+)(
entry->splitleft = TRUE,
entry r entry->next[J);

I

for (i=niedindx; i<bcount; i*-+)f
entry->splitleft zFALSE;
entry =entry->next[j];

olbce-nrIuktcut=mdnx
oldbucket->norb.bucket.count = medindx;mdidx

for (i=O; i!zdirn; i-r+) {
oldptr &oldbucket->norb.bucket.lists~il;
newptr &newbucket-->norb.bucket.lists~iI;
entry =oldbucket->norb.bucket-listsI~i];

while (entry) (
if (entry->splitleft)(

*oldptr = entry;
oldptr = (struct kdentrv **)(bentrv->next~iI);

else
*newptr = entry;
newptr = (struct kdentry **)(&entry->nextji]);

entry = entry->next[iJ;

*oldptr = (struct kdentry *)Q;
*newptr = (struct kdentry *)O;

newnode->norb. node. lower=
SplitBucket(newnode->nob.nnode.1ower,dim,betr,bptr,mehafl,wvar);

newnode->norb node. upper =

SplitBucket(nevnode->norb.node.upper,dim,bctr,bptr,meafl,wVVr);

return(newnode);

else
return(oldbucket);

Lm 
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#include "fastpnn.h"

void GetBucketStats (elem,dim,mean,wvar)

struct kdelem *elem;
int dim;
float *mean, *wvar;

* Function name:
* GetBucketStats

* Purpose:
* Calculate the k dimensional means and weighted variances for a bucket

* Input arguments:
* elem - pointer to the kD tree bucket for which the statistics are
* to be calculated
* dim - dimension of the data within the tree

* Output arguments:
* mean - array used for calculating bucket means
* wvar - array used for calculating bucket weighted variances

* Returns:
* Nothing
./

struct kdentry *entry;
float wgtsum;
int i;

wgtsum = 0.0;

for (i=O; i!=dim; i++) f
mean[i] = 0.0;
wvar[iJ = 0.0;

I

entry = elem->norb.bucket.lists[Oj;
while (entry) {

wgtsum += entry->weight;
for (i=O; il=dim; i+.) {

mean[i] += entry->wmean[i];
wvar[i] += entry->wsqmn[i];

I
entry = entry->next[O];

for (i=O; il=dim; i++) {
mean[i] 1= wgtsum;
wvar[i] = (wvar[i] / wgtsum) - (mean[i] * mean[il);

A
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#include "fastpnn.h"

static int BucketCompare(one,two)

struct kdelem **one, **two;

/*

* Function name:
* BucketCompare

* Purpose:
* Function used by the UNIX qsort routine to compare merge distortions of
* tvo buckets

* Input arguments:
* one - pointer to a pointer to the first kD tree bucket used in
* the comparison
* two - pointer to a pointer to the second kD tree bucket used in
* the comparison

* Output arguments:
* None

* Returns:
* STACK - the value 1 if dis.tortion(one) > distortion(two)

the value 0 it distortion(one) = distortion(two)
* the value -1 if distortion(one) • distortion(two)
,/

if ((*one)->norbbucket.distort < (*two)->norb.bucket.distort)
return(-1);

else it ((*one)-->norb.bucket.distort == (*two)->norb.bucket.distort)
return( 0);

else
return( 1);
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#include "fastpnn.h"

void CompressKDtree (tree, nmerge, bcktarray)

struct kdtree *tree;
int nmerge;
struct kdelem **bcktarray;

/*

* Function name:
* CompressKDtree

* Purpose:
* Function used to merge bucket entry pairs into single bucket entries for
* a fixed fraction of the total number of buckets
*

* Input arguments:
* tree - pointer to the kD tree undergoing the merge
* nmerge - number of bucket pairs to merge
* bcktarray - array of pointers to all buckets in the tree

* Output arguments:
* None

* Returns:
* Nothing

*/

void AssessCandidate(, ReduceKDbucket();
int i, ncount, BucketCompareo;

for (i=O,ncount=O; ib=tree->nbuckets; i++)
AssessCandidate(bcktarray[iJ,tree->diri,bcktarray,&ncount);

/* Handle end game situations /l

if (nmerge > neount)
nmerge = ncount;

if (neount > 1)
qsort((char *)bcktarray,ncount,sizeof(struict kdelem *),BucketCompare);

for (i=O; i!=nmerge; i++)
ReduceKDbucket(bcktarray[ii,tree->dim);

tree->nentries -= nmerge;
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#include "fastpnn.h"

void AssessCandidate(el~em,dim,barray,ncount)

struct kdelem *eleru, **barray;
int dim, *ncount;

*Function name:
* AssessCandidate

*Purpose:

* Determine the minimal distortion than c~an be produced by merging a pair
* of bucket entries

*Input arguments:
* ellem - pointer to the kD tree bucket under evaluation
* dim - dimension of the data within the entries

*Output arguments:
* barray - array of pointers to all buckets that can be merged
* ncount - pointer to counter used to keep track of the total numbpr

* of buckets that can be merged

*Returns:

* Nothing

struct kdentry *ientry, *jentry;
float reduction. dotprd, diff;
int i, j, k, firsttime;

firsttime = TRUE;
if (elem->norb.bucket.count > 1)

ientry - elem-->norb.bucket-lists[O];
for (i=0; i<elerb->norb.bucket.count-1; i..-4,ientry=ientry->next1LOj)(
jentry - entry->next[OI;
for (J~i+1; J<elem->norb. bucket -count; j++,jeritry-jentry->nextl0j)(

for (k=O,dotprd=O.0; k<dim; k++.){
diff ientry->meanlkJ - jentry->meanlkJ;
dotprd += diff * diff;

reduct~ion = dotpird * ientry->weight * jentry->weight/
(ientry->weight +- jentry->weight);

if ((reduction < elem->norb.bucket.dis tort) 11 first time)
elem->norb~bucket.distort - reduction;
elem->norb.bucket.entrya = lentry;
elem->norb.~bucket .entryb =jentry;
firsttime = FALSE;

barrayl(*ncount)++] elem;
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#include "fastpnn-lh'

void RedueeKDbucket(elern,dihl)

struct kdelem *elem;
int dim;

*Function name-.
* ReduceKDbucket

*Purpose:

* Merges a pair of bucket entries into a single entry

*Input arguments:
* elen: pointer to the kD tr~ee bucket whose entries are to be merged
+ dinm dimension of the data within the entries

*Output arguments:
* None

*Returns:

* Nothing

struct kdentry *ientry, *jentry, **leptr;
float nevweight;
int i, rnicnt;

ientry = elern->norb-bucket.entrya;
jentry = elen->norb.bucket.entryb;

1*Remove iontry, jentry from the list *

,-or (i=O; it=dim; i++){
for (leptr =&(elem->norb.bucket.lints[i]),rmcnt=O; rmcntl.2;)(
if ((*leptr.-jentry) 11 (*leptr==ientry))
*leptr = (*leptr)->ne;ct[ij;
rmcnt+±;

else
lepcr = &((*leptrl)->next[i]);

aiewveight = ientry->weight + jentry->weight;
for (i=O; i!=dim; i+.-) (
ientry->mean[iJ (ientry->neanlli] * ientry-)>veight +4

jentry->mean[i] * jentry->weight) / newveight;
ientry->wmfean~iJ ientry->Iieanlli] * newvweight;
ieiitry->wsqmn[.' = ientry->meanji] * ientry->vmean~i1I;

ientry->weight = nevweight;
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/* Reinsert ientry into the list in the proper order *

for (i=0; i'-dim; i++) (
for (leptr =&(elem->norb.bucket.listslij);

(*leptr && ((*leptr)->rneanji] < ientry.->mean[ij));
leptr = &((*leptr)->nextji]));

ientry->next[i] *leptr;
*leptr = ientry;

elem->norb.bucket-count--; /* Decrement the total entry count *
DestroyKflentry(jentry); 1* Free up jentry memory *

void fatal message(char string[])

return;
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/* This is the header file,"timer.h", which contains the declarations
*(or function prototypes) for the VAX/VMS timing routines

int init-timer(void);

int elapsed-tirne(int starting-time);

mnt identity (mnt arg);
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#include "timer.h"
#include <time.h>
#include <stdio.h>

/* This file contains the VAX/VMS timing routines. Note that the
"* functions init timer and elapsed time make use of a predefined
"* C function called "times". Function times returns the accumulated
"* CPU time in a predefined time structure called tbuffer t.

tbuffec t *init time ptr, *final time_ptr;
tbuffer-t buffer, init time, final-time;

int init timer (void)
{

int currenttime;
init time ptr = &init time;
times(init time ptr);
current time = (inittimeptr -> procuser time) * 10000;
return current-time;

int elapsedtime(int start-time)
(

int time elapsed;
tinal time ptr = &tinal time;
times(final time ptr);
timeelapsed = ((final time_ptr->procuser time) * 10000) - start-time;
return time-elapsed;I

int identity (int arg)
(

int some value = 0;
some value = some value + arg;
return some-value;

A
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/* This is the header file, "timer.h", which contains the declarations
* (or function prototypes) for the MIPS/UNIX timing routines.

long int inittimer(void);

long int elapsedtime(void);

int identity (int arg);
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#include "timerIh"
#include <time.h>
#Include <stdio.h>

/* This file contains the MIPS/UNIX timing routines. Note that the
"* functions init timer and elapsed time make use of the predefined
"* C function called "clock". FuncTion clock returns the amount of
"* CPU time used since the first call to clock.

*/

long int init timer (void)
{

long int current time;
current time = clocko;
return current time;

I

long int elapsedtime(void)
{

long int timeelapsed;
timeelapsed clocko;
return time elapsed;

}

int identity (int arg)

int some value = 0;
some-value = somevalue + arg;
return some-value;
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58.000000 19.000000 62.000000
59.000000 19.000000 74.000000
60.000000 19.000000 70.000000
57.000000 20.000000 76.000000
58.000000 20.000000 90.000000
59.000000 20.000000 91.000000
60.000000 20.000000 78.uOOO O
61.000000 20.000000 52.000000
56.000000 21.000000 75.000000
57.000000 21.000000 96.000000
58.000000 21.000000 101.000000
59.000000 21.000000 91.000000
60.000000 21.000000 67.000000
56.000000 22.000000 75.000000
57.000000 22.000000 100.000000
58.000000 22.000000 108.000000
59.000000 22.000000 104.000000
60.000000 22.00C000 92.000000
61.000000 22.000000 72.000000
56.000000 23.000000 84.000000
57.000000 23.000000 135.000000
58.000000 23.000000 159.000000
59.000000 23.000000 165.000000
60.000000 23,000000 155.000000
61.000000 23.000000 124.000000
62.000000 23.000000 61-.000000
56.000000 24.000000 125.000000
57.000000 24.000000 164.000000
58.000000 24.000000 190.000000
59.000000 24.000000 196.000000
60.000000 24.000000 185.000000
61.000000 24.000000 151.000000
62.000000 24.000000 74.000000
55.000000 25.000000 59.000000
56.000000 25.000000 109.000000
57.000000 25.000000 173.000000
58.000000 25.000000 200.000000
59.000000 25.000000 206.000000
60.000000 25.000000 194.000000
61.000000 25.000000 160.000000
62.000000 25.000000 81.000000
63.000000 25.000000 58.000000
36.000000 26.000000 52.000000
56.000000 26.000000 105.000000
57.000000 26.000000 165.000000
58.000000 26.000000 191.000000
59.000000 26.000000 197.000000
60.000000 26.000000 185.000000
6.000000 26.000000 152.000000
62.000000 26.000000 80.000000
63.000000 26.000000 58.000000
36.000000 27.000000 60.000000
37.000000 27.000000 73.000000
40.000000 27.000000 85.000000
41.000000 27.000000 94.000000
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with timer;
with FASTPNN;
with READ DATA;
with text-io; use text io;
with Data. Struct_Pkg; use DataStruct Pkg;
procedure main is

-- Procedure Name: Main

-- Purpose : This is the main routine for the FASTPNN algorithm.
-- The user is prompted to input the name of the input
-- file, the name of the output file, and the number of

input vector data values. External procedure
-- READ DATA is called by Main to read in the values
-- from the input data file. Main performs the timing
-- of the FastPNN algorithm (by calling timing
-- routines contained within Timer_Pkg) and outputs the
-- results.

LFNGTHIN INTEGER;
LENGTHOUT INTEGER;
POSITIONS LAST : INTEGER;
RESULTS LAST : INTEGER;
WEIGHTSLAST : INTEGER;
count :-integer;
dim : integer;
ncntrds : integer;
INNAME : STRING(l .. 80);
OUTNAME : STRING(l . 80);
VECTOR NUM : INTEGER;

loopcount : constant := 1;
fastpnnelapsed : integer;
fastpnn_timer : timer.microseetimer;

dummy timer : timer.microsectimer;
dummy elapsed_time : integer;
dummy arg : integer;

INFILE : FILE-TYPE;
OUTFILE ; FILETYPE;

package float io is new text io.floatio(float);
package int_lo is new text io.integer_io(integer);

procedure printarray (OUTFILE : in out FILETYPE;
arrayy : in means array type;
dim : in integer; count : in integer) is

k : integer;
package floatio is atew text io.floatio(float);

begin
k := 0;
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for i in 0 .. count - 1 loop
put(OUTFILE, " (");
for j in 0 .. dim - 1 loop

float io.put(OUTFILE, arrayy(k));
k :- k + 1;
if (J /- dim-i) then

put(OUTFILE, t"

else
put_line(OUTFILE, ")");

end if;
end loop;

end loop;
end printarray;

begin -- MAIN

PUT LINE("Enter Name of Input File. ");
GET LINE(INNAME, LENGTHIN);
PUT LINE("Enter Name of Output File ");
GET LINE(OUTNAME, LENGTHOUT);
PUT LINE("Enter the number of input vectors e");

INT IO.GET(VECTORNUM);
OPEN(INFILE, IN FILE, INNAME(l .. LENGTHIN));
CREATE(OUTFILE, OUTFILE, OUTNAME(I .. LENGTHOUT));

POSITIONS LAST :- 2 * VECTOR NUM - 1;
RESULTS LAST : 2 * VErrToR IMM - 1;
WEIGHTS-LAST - VECTORNUM- 1;

DECLARE

positions : means array type(O .. POSITIONSLAST);

results : meansarray_type(O .. RESULTSLAST);

weights : weights_arraytype(O .. WEIGHTSLAST);

begin

count := weights'length;
dim := positions'lengthlcount;

READDATA (INFILE, positions, weights);

ncntrds := 4; -- number of desired output vectors

-- first time the dummy loop

timer.init_timer(dummy timer);
for i ir 1 .. loop_count loop

dummy arg :- timer.identity(dummy_arg);
end loop;
if timer.alwaystrue then

dummyelapsed_time :- timer.elapsed_time(dummy-timer);
end if;
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-- now time the routine of intreest

timer.init _tiMeL(fastpnn _tiaet)~

for i in 1 .. loop _count loop
Fastl'NN(positions, '.eights. count. dim. ncntrds. resi~its);
dummy arg :- timer.i~entity(dumia, azgý;

end loop;

i f t ime I .a "vays _ true the

end it;

m : LINLtO4TF.LE);

-- no'. subtra.... th~e Oaam) tve:!eAzJ loop L.-ad ze;ýr: '.be zvs...tl

rLtT(uLrTFI-.E. 'Fast?%', %tecutez inx~
FLOAT IO.PUT(OUTFILE. 1atsrne.p'1

duma),elapseatEia,)) - ioa-i(loop count));

text io.put line (OUTrFILE, " sickoseconds.").

PUTLINE(OUTFILE, "Returned results");

printarray (OUTFILE, results, dim, n:ntrds);

CLOSE(OUTFILE);

end;

end main;
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with Data StructPkg; use DataStruct. Pkg;
with Build_Pkg;
with MergeDown_Pkg;
with Destroy_Pkg;

procedure FastPNN (means : in out meansarraytype;
weights : in out weights_arraytype,
count : in integer;
dim : in integer;
ncntrds : in integer;
centroids : out meansarray_type) is

-- Procedure name: FastPNN

-- Purpose: Outermost routine for the Pairwise Nearest Neighbor
-- Clustering algorithm

-- input arguments:
-- means - sample point array
-- weights - sample weight array
-- count - number of samples
-- dim - dimensionality of the sample data
-- ncntrds - target number of clusters to form the data

-- Output arguments
-- centroids - cluster vector results from FASTPNN algorithm

entryy : kdentryptrtype;
tree : kdtree_ptrtype;
k : integer;

begin

BuildPkg.BuildKDtree(means, weights, count, dim, tree);
MergeDownPkg.MergeDownKDtree(tree,ncntrds);

entryy :- tree.root.bucket.listsarray(O);
k :- 0;
for i in 0 .. ncntrds - I loop

for j in 0 .. dim -1 loop
centroids(k) := entryy.mean array(j);
k := k +1;

end loop;
entryy := entryy.nextarray(O);

end loop;

DestroyPkg.PestroyKDtree(tree);

end FastPNN;
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package Data StructPkg is

-- This package specification contains the declarations of
-- data types used by all modules in the FASTPNN routine

TRUEE constant :ý -1;
FALSEE constant := 0;
KDNODEE constant := 0;
KDBUCKETT constant 1;
BUCKETSIZE constant :M 8;
KDMERGE constant := 0.5;

dim : constant := 2;

-- Data Structures defined in the main program

type meansarraytype is array (integer range 0>) of float;

type weights_array type is array (integer range <>) of float;

-- data structure used in CollapseKDaode
type integer_ptr_type is access integer;

-- data structures needed in indxx
type float_array_type is array (integer range 0) of float;

type integer_arraytype is array (integer range <>) of integer;

type Kdentry;
type Kdentry_ptr_type is access Kdentry;
type Kdentry_ptr_array_type is array (integer range 0)

of Kdentry_ptr_type;
type meanarraytype is array (integer range <>) of float;
type wmean_array_type is array (integer range <>) of float;
type wsqmnarraytype is array (integer range 0) of float;
type wvar_array_type is array (integer range <>) of float;

type Kdentry is
record

next array : Kdentry_ptr_arraytype(O .. dim - 1);
splitleft : integer;
weight : float;
meanarray : meanarray type(O .. dim - 1);
wmeanarray : wmean arraytype(0 .. dim - 1);
wsqmn array : wsqmnarray_type(0 .. dim 1);

end record;

type datastructuretype is (kdnode_type, kdbuckettype);
type kdelem(datastructure : data structure_type);
type kdelem_ptrtype is access kdelem;

-- Data structure kdelem ptr_array type used in BalanceKDtree
type kdelemptrarray type is array (integer range <>)
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of kdelemptrtype;

type kdnode is
record

dindx : integer;
lower : kdelem ptr type;
upper : kdelem ptr type;

end record;

type kdbucket is
record

count : integer;
lists_array : Kdentry_ptrarray_type(O dim - 1);
entrya : Kdentryptr_type;
entryb : Kdentry_ptrtype;
distort : float;

end record;

type kdbucket_ptr_type is access kdbucket;

type kdelem (datastructure : data structuretype) is
record

typee : integer;
case data structure is

when kdnode_type .>
node : kdnode;

when kdbucket_type .>
bucket : kdbucket;

end case;
end record;
norb n : kdelem(kdnode_type);
norb'b : kdelem(kdbuckettype);

type kdtree is
record

dim : integer;
root : kdelem_ptr_type;
nbuckets : integer;
nentries : integer;

end record;

type kdtree_ptr_type is access kdtree;

end DataStruct_Pkg;
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with Data StructPkg; use DataStruct_Pkg;
package BuildPkg is

-- Package SpecificatiunA Build Pkg contains the declaration of
-- all subprograms which are available for building and
-- initialization of the K-d data structure.

procedure BuildKDtree (means : in out meansarray_type;
weights : in out weights array_type;
count : in integer;
dim : in integer;
tree out Kdtreeptr_type);

function CreateKDbucket (dim : integer) return kdeiem_ptr_type;

end Build Pkg;
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package body BuildPkg is

function CreateKDbucket (dim : integer) return kdelem ptrtype
is separate;

procedure Indxx (arrin : in float_arraytype;
indx : out integer array type;
n : in integer) is separate;

procedure SortBucket (elew : in kdelem ptrtype;
dim : in integer) is separate;

function CreateKDentry (dim : in integer) return kdentry ptr type
is separate;

procedure CreateFirstBucket (means : in out meansarraytype;
weights : in out veights_array_type;
count : in integer;

dim : in integer;
bucket : out kdelem_ptrtype)

is separ ý';

function CreateKDtree (dim : integer) return kdtreeptrtype
is separate;

procedure BuildKDtree (means : in out meansarray_type;
weights : in out weightsarraytype;
count : in integer;

dim : in integer;
tree out Kdtree_ptr_type) is separate;

end BuildPkg;
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separate (Build Pkg)
procedure BuildKfDtree (means : in out meansarray_type;

weights : in out weightsarray_type;
count : in integer;
dim in integer;
tree out Kdtree_ptrtype) is

Procedure name: Buildkdtree

-- Purpose: Constructs an initial KD tree from the sample data

-- Input arguments:
-- means - sample point array
-- weights - sample weight array
-- count - number of samples
-- dim - dimensionality of the sample data

-- Output arguments:
-- pointer to a kdtree

temptree : kdtreeptr_type;

bucket : kdelem_ptr type;

begin -- BuildKDtree

temp tree :- CreateKDtree (dim);
CreateFirstBucket (means, weights, count, dim, bucket);
temp_tree.root :- bucket;
temp_tree.nbuckets := 1;
temp_tree.r.entries :f count;
tree :- temp_trec;

end BuildKDtree;
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separate (Build Pkg)
procedure CreateFirstBucket (means : in out meansarray_type;

weights : in out weights array-type;
count : in integer;
dim : in integer;
bucket : out kdelemptrtype) is

-- Procedure name:
-- CreateFirstBucket

-- Purpn-e:
-- Create and initialize the first bucket in a KD tree

-- Input arguments:
-- means - sample point array
- - weights - sample weight array
-- count - number of samples

dim - dimensionality of the sample data

-- Output arguments;
bucket - pointer to first bucket in the Kdtree

mean, wvar : mean arraytype(O .. dim -1);
kdptr, lptr : kdentryptr type;
KDPTRO, KDPTRl : KDENTRYPTR TYPE;
k integer;
tempbucket : Kdelemptrtype;

begin -- CreateFirstBucket

tempbucket ;- CreateKDbucket(dim);
tempbucket.bucket.count :- count;

k :. 0;
for i in 0 .. (count - 1) loop

kdptr :. CreateKDentry(dim);
kdptr.weight :- weights(i);
for J in 0 .. (dim - 1) loop

kdptr.mean array(j) ;- means(k);
kdptr.vmeanarray(j) :- kdptr.meanarray(j) * kdptr.weight;
kdptr.vsqmnarray(j) := kdptr.mean-array(j) *

kdptr.wmeanarray(j);
k :- k ÷ 1;

end loop;
if (i.O) then

tempbucket.bucket.lists_array(O) := kdptr;
lptr :- kdptr;

else
lptr.next array(O) := kdptr;
iptr := kdptr;

end if;
end loop;

SortBucket (tempbucket, dim);
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bucket :- tenipBucket;
end CreateFirstBucket;
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with Data Struct_Pkg; use DataStructPkg;
separate (Build Pkg)
function CreatelCDbucket (dim : integer) return kdelemptr_type is

-------------------------------------------------------------
-- Function name:
-- CreateKDbucket

-- Purpose:
-- Create a bucket for a KD tree

-- Input arguments
-- dim - dimensionality of the sample data

-- Output arguments
-- None

-- Returns:
-- returns pointer to new created bucket

bucket : kdelem ptrtype;

begin

bucket :- nev kdelem(kdbucket type);
bucket.typee :. KDBUCKETT;
return bucket;

end CreateKDbucket;
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separate (BiuildPkg)
function Createk.Dentry (dim :in integer) return kdentry_ptr_type is

-- Function name:
-- CreateK~entry

-- PurposE.:
-- Create a KD tree bucket entry for holding a sample point

-- Input arguments:
-- eim - dimensionality of the sample data

-- Output arguments:
-- None

-- Returns:
-- pointer to a bucket entry

entryy :kdentry-ptr_type;

begin

entryy :-new Kdentry;

return entryy;

end Create~flpn trv ±
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separate (BuildPkg)
function CreateKDtree (dim : integer) return kdtreeptrtype is

-- Function name:
-- CreateKDtree

-- Purpose:
dynamically allocates storage space for a KD tree data structure

-- Input Arguments:
-- dim - dimensionality of the tree data

Output arguments
-- None

-- Returns:
-- pointer to a KDtree

tree : kdtree ptr_type;

begin

tree := new kdtree;
tree.dim ;- dim;
return tree;

end CreateKDtree;
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separate (Build_Pkg)
procedure Indxx (arrin in floatarray_type;

indx : out integerarray_type;
n : in integer) is

-- Procedure name: Indxx

-- Purpose: Sort an array of indeces indx based on the data arrin
using an indexed version of a heap sort. Modified from
Numerical Recipes indexx

-- Input Arguments:
-- arrin - array of data used for sorting
-- n - number of entries in arrin

-- Output arguments:
-- indx - Indices specifiying the order of data in arrin

J, i, 1, ir, indxt : integer;
q : float;
indxtemp : integer arraytype(O..n-l);

indx j, indx_j_plus_1 : integer;
arrinj, arrinj plus_1 : float;

begin

for k in 0 .. n- I loop
indxtemp(k) :k;

end loop;

I :- n/2;
ir :- n - 1;

while TRUE loop
if 1 > 0 then

1 :- 1- 1;
indxt :- indxtemp(1);

q := arrin(indxt);
else

indxt := indxtemp(ir);
q := arrin(indxt);
indxtemp(ir) := indxtemp(O),
ir :. ir - 1;
if ir = 0 then

indxtemp(O) := indxt;
exit; -- exit

end if;
end if;

i := 1;
j := 2 * (I + 1) - 1;
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while (j <. ir) loop
if (J < ir and then arrin(indxtemp(j)) <

arrin(indxtemp(j +1))) then
j :. j + 1;

end it;
if (q < arrin(indxtemp(j))) then

indxtemp(i) :~indxtemp(j);
i :=J;
j -j + i + 1

else
J : ir + 1;

end if;
end loop;

indxtemp(i) :. indxt;
end loop;
indx :. indxtemp;

end Indxx;
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separate (Build Pkg)
procedure SortBucket (elem : in kdelem ptrtype;

dim in integer) is

-- Procedure name: Sortbucket

-- Purpose: Soit the entries in a KD tree bucket across
-- each dimension separately

-- Input arguments:
-- elem - pointer to the bucket containing the entries
-- to be sorted
-- dim - dimensionality of the sample data

-- Output arguments: None

entryy : kdentry_ptrtype;
epbffr : kdentry_ptrarraytype(O .. elem.bucket.count-1);
mnbffr : float array_type(O .. elem.bucket.count-1);
inbftr : integerarraytype(O .. elem.bucket.count-1);
count : integer;

begin

count :. elem.bucket.count;
for i in 0 .. dim - i loop

entrvy :v elem.bucket.lists array(O);
for j in 0 .. count-1 loop

mnbffr(J) := entryy.meanarray(i);
epbffr(j) := entryy;
entryy :- entryy.nextarray(O);

end loop;

Indxx(mnbffr, inbffr, count);

elem.bucket.lists_array(i) :. epbffr(inbffr(O));
for j in 1 .. count- I loop

epbffr(inbffr(j - 1)).nextarray(i) :
epbffr(inbffr(j));

end loop;
epbffr(inbffr(count - !)).next_array(i) :. null;

end loop;

end SortBucket;
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with DataStructPkg; use DataStruct_Pkg;
package MergeDownPkg is

-- Package specification BuildPkg contains the declarations
-- of all subprograms which are available for reducing the K-d

-- tree built in module BuildKDtree to the the specified number
-- of output centroids

4 procedure MergeDovnKDtree (tree : in kdtree_ptr_type;
ncntrds : in integer);

end MergeDown pkg;
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with Destroy Pkg; use Destroy_Pkg;
with Build Pkg; use Build Pkg;
package body MergeDovn_Pkg is

procedure CollapseKDnode (elem : in out kdelem_ptrtype;
dim : in integer;
bctr : in out integer) is separate;

procedure GetBucketStats (elem : in kdelemptr_type;
dim : in integer;
mean : in out meanarraytype;
wvar : in out wvar array type) is

separate;

function CreateKDnode return kdelem_ptr_type is separate;

procedure SplitBucket (oldbucket : in out kdelemptrtype;
dim in integer;
bctr : in out integer;
bcktarray : in out kdelem ptrarraytype;
bptr : in out integer;
mean : in out mean arraytype;
wvar : in out wvar array type) is

separate;

procedure BalanceKDtree (tree : in kdtreeptrtype;
bcktarray : in out

kdelem_ptr_array type) is separate;

procedure AssessCandidate (elem : in kdelem_ptr_type;
dim : in integer;
barray : in out kdelem ptr array type;
ncount : in out integer) is separate;

function BucketCompare (one Kdelem_ptr_type;
two Kdelemptr_type)

return boolean is separate;

procedure Quicksort (bcktarray : in out Kdelemptr_array_type)
is separate;

procedure ReduceKDbucket (elem : in kdelemptrtype;
dim : in integer) is separate;

procedure CompressKDtree (tree : in kdtree ptr type;
nmerge : in integer;
bcktarray : in out
kdelemptrarray_type) is separate;

procedure MergeDownKDtree (tree : in kdtree_ptrtype;
ncntrds : in integer) is separate;

end MergeDown_Pkg;
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separate (MergeDovnPkg)
procedure AssessCandidate (elem : in kdelem_ptrtype; dim : in integer;

barray : in out kdelemptr_a-raytype;
ncount : in out integer) is

-- Procedure name: Assesscandidate

-- Purpose: Determine the pair of bucket entries which produces
-- the minimal mean distortion when merged

-- Input arguments:
-- elem - pointer to the Kl tree bucket under evaluation
-- barray - array of pointer to all buckets in the KD tree
-- ncount - counter initialized to zero

-- Output arguments:
-- barray -- array of pointers to all buckets that can be merged
-- ncount - counter used to keep track of the the total number
-- of buckets that can be merged

ientry, jentry : kdentry_ptr_type;
reduction, dotprd, diff : float;
firsttime : integer;

begin

firsttime :. TRUEE;

if (elem.bucket.count > 1) then
ientry := elem.bucket.lists_array(O);
for i in 0 .. elem.bucket.count - 1 loop

jentry := ientry.next array(O);
for j in i + 1 .. elem.bucket.count - 1 loop

dotprd := 0.0;
for k in 0 .. dim - 1 loop

diff := ientry.mean array(k) - jentry.meanarray(k);
dotprd := dotprd + diff * diff;

end loop;
reduction := (dotprd * ientry.weight * jentry.weight)

(ientry.weight + jentry.weight);

if ((reduction < elem.bucket.distort) or
"(firsttime = TRUEE)) then
elem.bucket.distort :- reduction;
elem.bucket.entiya ientry;
elem.bucket.entryb := jentry;
firsttime :. FALSEE;

end if;
jentry := jentry.nextarray(O);

end loop; -- end j loop
ientry := ientry.next array(O);

end loop; -- end i loop
barray(ncount) := elem;
ncount := ncount + 1;
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end if;

end AssessCandidate;
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separate (MergeDown Pkg)
procedure BalanceKltree (tree : in kdtreeptrtype;

bcktarray : in out kdelem ptr_array_type) is

-- Procedure name: BalanceKDtree

-- Purpose: Redistribute the entries in a KD tree so that each bucket
-- has approximately the same nuamber of entries

-- Input arguments:
-- tree - pointer to a KD tree

-- Output arguments:
-- bcktarray - array used to retain a pointer to each bucket after
-- balancing

bptr : integer;
mean : meanarraytype(O .. dim - 1) :f (others => 0.0);
wvar : var arraytype(O .. dim - 1) :- (others -> 0.0);

begin

if (tree.root.typee - KDNODEE) then
CollapseKDnode(tree.root, tree.dim, tree.nbuckets);

end if;

bcktarray(O) := tree.root;
bptr := 1;

SplitBucket(tree.root, tree.dim, tree.nbuckets, bcktarray,
bptr, mean, wvar);

end BalanceKDtree;
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separate (MergeDown Pkg)
function BucketCompare (one : Kdelemptrtype; two kdelem_ptr_type)

return boolean is

begin
if one.bucket.distort < two.bucket.distort then

return FALSE;
else

return TRUE;
end if;

end BucketCompare;
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separate (MergeDown_Pkg)
procedure CollapseKflnode (elem : in out ktdelem-ptr type;

dim : in integer;
betr : in out integer) is

FIRSTIME : BOOLEAN :- TRUE;
ptr,entptr, lentry, rentry, testentry: kdentry ptr type;
bucket : kdelem-ptr type;

begin

if elem.node-lover.typee /a KDBUCKETT then
CollapseKDnode (elem.node.lover, dim, betr.);

end if;

if elern.node.upper.typee /. KDBUCKETT then
CollapseKDnode (elem.node.upper, dim, bctr);

end if;

bucket :- e].em.node.lower;

for i inO dim - 1oop
entptr :=elem.node.lover.bucket.lists~array(i);
lentry :-elem.riode-lover.bucket-lists-array(i);
rentry :-clem.node.upper.bucket~lists-array(i);

testentry :. elem.node.upper.bucket.lists-array(l);

while (lentry 1- null) and (rentry 1- null) loop
if lentry.mean-array(i) < rentry.mean array(i) then

if (FIRSTIME - TRUE) then
elem.node.lower-bucket-lists-array(i) :. lentry;
entptr :. lentry;
FIRSTIME :. FALSE;

else -- FIRSTIME - FALSE
entptr.next-array(i) :. lentry;
entptr :. lentry;

end if;
lentry :. lentry.next_array(i);

else -- case where lentry.mean array(i) >-
rentry.mean-array(i)

if (FIRSTIME - TRUE) then
eleni-node.lover.bucket.lists-array(i) :-rentry;

entptr :- rentry;
FIRSTIME :. FALSE;

else
entptr.next -array(i) := rentry;
entptr := rentry;

end if;
rentry :- rentry.next_array(i);

end if;
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end loopi;

if (lentry /- null) then
while (lentry /. null) loop

entptr.next array(i) :. lentry;
entptr :-lentry;
lentry :=lentry.next~array(i);

end loop;
end if;

if (rentry /. null) then
while (rentry /. null) loop

entptr.next_array(i) :- rentry;
entptr :-rentry;
rentry :-rentry.next~array(i);

end loop;
end if;
FIRSTIME :. TRUE;

end loop;

bucket.bucket-count := elem.node-lower-bucket-count +-
elem-node .upper. bucket .count;

DestroyKDbucket (elem.node.upper);
Des troyKDnode (elem);

betr : bctr - 1;
elemn: bucket;

end CollapseKDnode;
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separate (MergeDovn_Pkg)
procedure CompressKDtree (tree : in kdtreeptrtype; nmerge : in integer;

bcktarray : in out kdelemptr_array_type) is

-- Procedure name: CompressKDtree

-- Purpose: Pzoceduie used to merge bucket entry pairs into single bucket
-- entries for a fixed fractita of the total number of buckets

-- Input arguments:
-- tree - pointer to a KD tree undergoing the merge

nmerge - number of bucket pairs to merge
-- bcktarray - array of pointers to all buckets in the tree

-- Output arguments:
-- none

ptr : kdentryptrtype;
ncount : integer;
TEST PTR : kdentry_ptrtype;
nmerge_temp : integer := nmerge;

begin

ncount := 0;

-- for each bucket, one at a time, find the candidate pair,
-- ENTRYA and ENTRYB, which has the least weighted square
-- error (DISTORT) -- between them

for i ýn 0 .. tree.nbuckets - 1 loop
AssessCandidate(bcktarray(i), tree.dim, bcktarray, ncount);

end loop;

if (nmerge > ncount) then
nmergetemp :- ncount;

end if;

if (ncount > 1) then
Quicksort(bcktarray(O .. ncount-1));

end if;

for i in 0 .. nmerge_temp - 1 loop
ReduceKDbucket(bcktarray(i), tree.dim);

end loop;

tree.nentries :- tree.nentries - nmerge temp;

end CompressKDtree;
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separate (HergeDown_Pkg)
function CreateKDnode return kdelem_ptr_type is

-- -- - - - - - - -- - - - - - - --- - - - - - - -- - - - - - - -

-- Function name: CreateKDnode

-- Purpose: Create a KD tree node

-- Input arguments:
-- none

-- Returns:
-- pointer to the newly created KD tree node

node : kdelemnptrtype;

begin
node := new kdelem(kdnode type);
node.typee :- KDNODEE;
return node;

end CreateKDnode;
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separate (HergedownPkg)
procedure GetflucketStats (elem in kdelem ptr type;

dim in integer;
mean :in out mean_array type;
wvar :in out wvar-array type) is

entryy kdentry _ptr type;

wgtsum float;

begin

vgtsum :=0.0;

for i in 0. dim -i ioop
mean(i) :-0.0;
vvar(i) :=0.0;

end loop;

entryy :- elem-bucket.lists array(0);
while (entryy /- null) loop

vgtsum :. wgtsun entryy.weight;
for i in 0. dim- I loop

mean(i) :-mean(i) + entryy.wmean_array(i);
wvar(i) :w wvar(i) + entryy.wsqmn_array(i),

end loop;

entryy :-entryy.next~array(0);
end loop;

for i in 0. dim -1 loop
mean(i) :-irean(i) /wgtsum;
wvar(i) :-(wvar(i) Iwgtsum) - (mean(i) *mean(i));

end loop;

end GetBucketStats;

LO M 
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separate (MergedovnPkg)
procedure MergeDovnKDtree (tree : in kdtree ptr type;

ncntrds : in integer) is

-- Procedure name: HergeDuwnKDtree

Purpose: Reduce a KD tree to a single bucket having ncntrds
-- entries using the PNN algorithm

-- Inpit arguments:
-- tree - pointer to a KD tree

ncntrds - desired number of entries after merging

-- Output arguments:
-- None

-- Returns:
-- Nothing

ptr : kdentry ptr type;
nmerge, ntile : integer;
maxbkts : integer :. tree.nentries /(BUCKETSIZE / 2);
bcktarray : kdelemptrarraytype(O .. maxbkts);

begin

while (tree.nentries > ncntrds) loop

BalanceKDtree (tree, bcktarray);

if KDHERGE * float(tree.nbuckets) > 1.0 then
-- truncate by the integer conversion by subtracting .5
ntile := integer((KDMERGE * float(trec.nbuckets)) - 0.5);

else
ntile 1= 1;

end if;

if (tree.nentries - ncntrds) < ntile tnen
nmerge := tree.nentries - ncntrds;

else
nmerge := ntile;

end if;
CompressKDtree (tree, nmerge, bcktarray);

end loop;

if tree.root.typee - KDNODEE then
CollapseKDnode (tree.root, tree.dim, tree.nbuckets);

end if;

end HergeDovnKDtree;
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separate (Mergedown_Pkg)
procedure Quicksort (bcktarray : in out kdelemptr_array_type) is

SIZE : INTEGER :- bcktarray'length;
FIRST : INTEGER := bcktarray'FIRST;
LAST : INTEGER :m bcktarray'LAST;
P : INTEGER;

procedure SWAP(A, B : in out KDELEM PTR TYPE) is

TEMP KDELEM PTR TYPE;

begin

TEMP :- A;
A :- B;
B := TEMP;

end SWAP;

procedure PARTITION(bcktarray ; in out KDELEM PTR ARRAY TYPE;
NEWPIVOT : out INTEGER) is

PIVOTVALUE : KDELEM PTR TYPE;
FIRST : INTEGER bcktarray'FIRST;
LAST : INTEGER :. bcktarray'LAST;
LOWER : INTEGER;
UPPER : ImEGER;
LASTOPEN : INTEGER;

begin

LOWER ; FIRST;
UPPER := LAST;
PIVOTVALUE :- bcktarray(FIRST);
LASTOPEN := FIRST;

while LOWER < UPPER loop
while UPPER > LOWER and then

BucketCompare(bcktarray(upper), PIVOTVALUE) loop

UPPER :. UPPER - 1;

end loop;

bcktarray(LASTOPEN) :- bcktarray(UPPER);
LASTOPEN := UPPER;

while LOWER < UPPER and then
BucketCompare(PIVOTVALUE,bcktarray(lower)) loop

LOWER :. LOWER + 1;

end loop;

bcktarray(LASTOPEN) ;. bcktarray(LOWER);
LASTOPEN := LOWER;
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end loop;

bcktarray(LASTOPEN) :- PIVOTVALUE;
NEUPIVOT :- LASTOPEN;

end PARTITION;

begin -- UICKSORT

if SIZE <- 1 then
null;

else
PARTITICN(bcktarray,P);
OUICKSORT(bcktarray(FIRST P - 1));
QUICF'SORT(bektarray(P +1 LAST));

end if;
end Quicksort;
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with Data StructPkg; use DataStruct_Pkg;
separate (MergeDovn_Pkg)
procedure ReduceKDbucket (elem : in kdelemptr_type;

dim : in integer) is

-- Procedure name: ReduceKDbucket

-- Purpose: Merges a pair of bucket entries into a single entry

-- Input arguments:
-- elem - pointer to the KD tree bucket whose entries are to
-- be merged
-- dim - dimension of the data within the entries

-- Output arguments:
-- None

last entry, ientry, jentry, leptr, oldptr : kdentry_ptr_type;
newweight : float;
rmcnt : integer;
REMOVE FIRST ENTRY : BOOLEAN := TRUi.;
FIRST ENTRY - BOOLEAN :. TRUE;
ptr, TEST PTR : kdentryptr_t;pe;

begin

ientry :- elem.buc&et.entrya;
jentry := elem.bucket.entryb;

-- remove ientry and jentry from the list
for i in 0 .. dim - 1 loop

leptr := elem.bucket.lists_array(i);
rmcnt := 0;
while rmcnt < 2 loop

if ((leptr /= ientry) and (leptr /- jentry)) then
last-entry := leptr;
leptr := leptr.nextarray(i);
REMOVEFIRSTENTRY :. FALSE;

else
if REMOVE FIRST ENTRY - TRUE then

elem.bucket.lists-array(i) :. leptr.next array(i);
else

lastentry.nextarray(i) := leptr.next array(i);
end if;
leptr := leptr.next_array(i);
rmcnt := rmcnt + 1;

end if;
end loop;
REMOVE FIRSTENTRY := TRUE;

end loop;

newweight := ientry.weight + jentry.weight;
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for i in O. dim-i1 loop
ientry.mean-array(i) :=(ientry.mean-array(i)*

ientry.weight + jentry.mean array(i)
* jentry.veight) / nevveight;

ientry.wmean-array(i) :.ientry.mean_array(i) * nevveight;

ientry.wsqmn-array(i) ientry.mean array(i) *
ientry.wmean array(i);

end loop;

ientry.weight :ýnewweight;

-- Reinsert ientry into the list in the proper order

for i inO dim - 1ioop
leptr elem.bucket.lists array(i);

-- traverse entries that will remain unchanged in
-- original list

while (leptr /= null) and then
(leptr.mean_array(i) < ientry.mean-array(i)) loop

oldptr :=leptr;
leptr :=leptr.next~array(i);
FIRST ENTRY :~FALSE;

end loop;

-- insert ientry

if (FIRSTENTRY =TRUE) then
elem.bucket.lists-array(i) :. ientry;

else
oldptr.next-array(i) := entry;

end if;

ientry.next -array(i) :=leptr;
FIRST ENTRY :. TRUE;

end loop;

elem.bucket.count :- elem.bucket.count - 1;

Des troyKDentry(j entry);

end ReduceKflbucke t;
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with Build Pkg; use BuildPkg; -- to "see" CreateKDbucket
separate (MergeDownPkg)
procedure SplitBucket (oldbucket : in out kdelemptr_type;

dim in integer;
bctr in out integer;
bcktarray : in out kdelem ptrarray_type;
bptr : in out integer;
mean : in out mean arraytype;
wvar : in out wvar array_type) is

-- Procedure name: Splitbucket

-- Purpose: Recursive procedure used to split a bucket into two
-- smaller buckets having half as many entries

j, bcount, medindx : integer;
newnode : kdelem_ptr_type;
newbucket : kdelemptr_type;
dummy : kdelemptrtype;
oldptr, newptr : kdentry_ptr_type;
entryy : kdentry_ptrtype;
FIRSTIME LEFT : BOOLEAN := TRUE;
FIRSTIMERIGHT BOOLEAN ;= TRUE;

begin

if (oldbucket.bucket.count > BUCKETSIZE) then

GetBucketStats (oldbucket, dim, mean, vvar);

-- find dimenson with largest variance
j := 0;
for i in 1 .. dim - I loop

if (wvar(i) > wvar(j)) then
j := i; -- j is dimenson with largest variance

end if;
end loop;

bcount := oldbucket.bucket.count; -- bcount is BUCKETCOUNT

medindx :• (bcount + 1) / 2; -- median index

newnode.= CreateKDnode;

newnode.node.dindx := j; -- dimension to be split

newbucket := CreateKDbucket(dim);

newnode.node.lower oldbucket;

newnode.node.upper := newbucket;

bctr := bctr + 1; -- increment number of buckets in tree
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bcktarray(bptr) :=newbucket;

bptr :- bptr + 1; -- increment array index of bckta).ray

-- traverse the entries below the median value in the
-- j dimension (the dimension with the largest variance)
-- and set entryy.splitleft = TRUE

entryy := oldbucket-bucket.lists -array(j);
for i in 0 .. medinds 1 loop

entryy.splitleft :=TRUEE;
entryy :. entryy.next~array(j);

end loop;

-- traverse the entries above the median value in the
-- j dimension (the dimension with the largest variance)
-- and set entryy.splitlett = FALSE

for i in medindx .. beount - 1 loop
entryy.sp'Litleft :=FALSER;
entryy :=entryy.next-array(j);

end loop;

oldbucket.bucket.count medindx;

newbucket.bucket.count :=beount - medindx;

for i inO dim- I loop
oldptr =o'ldbUucket.bUueket.iLists at~ray'ki);
newptr :=newbucket.bucket.lists array(i);
entryy taoldbucket.bucket.lists~array(i);

while (entryy /= null) loop
if (entryy.splitleft =TRUER and

FIRSTIMELEFT =TRUE) then
oldbucket.bucket.lists_array(i) :=entryy;

oldptr :- entryy;
FIRSTIMELEFT :- FALSE;

elsif (entryy.splitleft - TRUER and
FIRSTIME LEFT -FALSE) then

oldptr.next array(i) :. entryy;
oldptr :. entryy;

elsif (entryy.splitleft=FALSEE and
FIRSTIME RIGHT-,TRUR) then

newbucket.bucket.lists-array(i) :. entryy;
newptr := entryy;
FIRSTIMERIGHT :. FALSE;

elsif (entryy.splltleft=FALSEE and
FIRSTIMERIGHT-FALSE) then

newptr.next_array(i) :. entryy;
newptr :- entryy;

end if;
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entryy :-entryy.next array(i);

end loop;

FIRSTINE LEFT :-TRUE;
FIRSTINERIGHT z. TRUE;

oldptr.next -array(i) :-null;
nevptr.riext array(i) null;

end loop;

SplitBueket(newnode.node.lower, dim, bctr,
bcktarray, bptr, mean, vvar);

SplitBucket(nevnode.node.upper, dim, batr,

bclaarray, bptr, mean, vvar);

oldbucket newnode;

end if;

end SplitBucket;
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with Data Struct Pkg; use Data Struct_Pkg;
with UNCHECKED DEALLOCATION;
package Destroy_Pkg is

-- This package specification contains the dynamic deallocation

-- routines which are visible are to be visible

procedure DestroyKDnode (node : in out Kdelem_ptr_type);

procedure DestroyKDtree (tree : in out Kdtreeptrtype);

procedure DestroyKDbucket (bucket in out kdelemnptr_type);

procedure DestroyKDentry (entryy in out kdentry_ptrtype);

end Destroy_Pkg;
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package body DestroyPkg is

This package body contains the routines for deallocated
-- memory which was previously dynamically allocated.

procedure DestroyKDnode (node : in out kdelem ptrtype) is
separate;

procedure DestroyKDentry (entryy : in out kdentryptr type) is
separate;

procedure DestroyKDbucket (bucket : in out kdelemptr type) is
separate;

procedure DestroyLastBucket (bucket : in out kdelem ptrtype) is
separate;

procedure DestroyKDtree (tree in out kdtree_ptr_type) is
separate;

end Destroy_Pkg;
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separate (Destroy_Pkg)
procedure DestroyKDbucket (bucket : in out Kdelemptrtype) is

-- Procedure name: DestroyKDbucket

-- Purpose: Destroy a Kd tree bucket

-- Input arguments:
-- bucket - bucket to be destroyed

-- Output arguments:
-- bucket - bucket is null upon successful execution

of FREE(bucket)

procedure FREE is new UNCHECKEDDEALLOCATION(kdelem,

kdelemptrtype);

begin

FREE(bucket);

end DestroyKDbucket;
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separate (Destroy_Pkg)
procedure DestroyKDentry (entryy : in out Kdentryptrtype) is

-- Procedure name: DestroyKDentry

-- Purpose: Destroy a KD tree bucket entryy

-- Input arguments:
entryy - pointer to the entryy to be destroyed

-- Output arguments:
-- entryy - points to null upon successful execution of

FREE(entryy)

procedure FREE is new UNCHECKEDDEALLOCATION (Kdentry,

Kdentryptrtype);

begin

FREE(entryy);

end DestroyKDentry;

IB4
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separate (DestroyPkg)
procedure DestroyLastBucket (bucket : in out Kdelem_ptr_type) is

-- Procedure name : DestroyLastBucket

-- Purpose : Destroy the last bucket in a tree

-- Input arguments:
-- bucket - bucket to be destroyed

-- Output arguments:
-- None

entryy, next : kdentry ptr type;

begin

entryy :. bucket.bucket.lists -array(O);
while entryy /. null loop-

next :- entryy.next array(O);
DestroyKDentry (entryy);
entryy := next;

ead loop;

DestrovKDbucket(bucket);

end DestroyLastBucket;
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separate (Destroy Pkg)
procedure DestroyKDnode (node : in out Kdelem_ptr_type) is

-- Procedure name: DestroyKDnode

-- Purpose:
-- Deallocate a KD tree node

Input arguments;
-- node - pointer to the entry to be destroyed

-- Output arguments:
-- node - point to null upon successful execution of FREE(node)

procedure FREE is new UNCHECKEDDEALLOCATION(kdelem,

kdelem-ptr_type);

begin

FREE(node';

end Deit-oyKDnode;
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separate (Destroy_Pkg)
procedure DestroyKDtree (tree : in out kdtree_ptrtype) is

-- Procedure name: DestroyKDtree

-- Purpose: Deallocate a KD tree structure

-- Input arguments:
-- tree - pointer to the KD tree

-- Output arguments:
-- tree - pointer to null upon successful completion of
-- FREE(tree)

procedure FREE is new UNCHECKEDDEALLOCATION(kdtree,

kdtree_ptr_type);

begin

if tree.root /- null then
DestroyLastBucket(tree.root);

end if;

FREE(tree);

end DestroyKDtree;
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package timer is

-- See bottom for comments on how to use the timer

type microsec timer is private;

procedure init timer( obj out microsec timer );

function elapsed_time( obJ in microsectimer ) return integer;

function identity( arg : integer ) return integer;

function alwaystrue return boolean;

private
type microsec timer is new integer;

end timer;

-- Calling sequence: Call the subprograms in this order:

-- loop count ; constant integer :- 100; -- say...

-- dummy_timer : timer.microsec timer;
-- dummyelapsed time : integer;
-- dummyarg : integer;

Fay tifelm ti eL-microsec timer;
-- my elapsed time : integer;

-- begin

-- now loop through dummy loop to determine the length
-- of time it takes to run through the loop itself.
-- We will subtract this out later.

-- timer.init timer( dummy timer );
-- for i in 1..loop-count
-- loop
-- dummy arg :- timer.identlty( dummyarg );
-- end loop;
-- if timer.alvaystrue
-- then
-- dummy_elapsedtime :- timer.elapsedtime( dummytimer );
-- end if;

-.... now run through the same loop and add the actual code that
-... you want to time.

-- timer.init timer( my timer );
-- tor i in l..loopcount

loop
-.... do something here that needs timing...
-- timer.identity( dummy_arg );
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-- end loop;
-- if timer.alwaystrue
-- then
-- my elapsed time :- timer.elapsed_time( my-timer );
-- end if;

-.... now subtract off the dummy loop time and divide by the
-.... number of times that the loop occurs. This equals one
-.... iteration of the interesting code.

-- time for one iteration :-
-- ( my_elapsed time - dummy elapsed time ) / loop_count );

-- note that the value of my_timer is not changed by a call to
-- timer.elapsed-time. You can have as many timers as you wish.
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vith system ; use system ;
with condition handling ; use conditionhandling
with starlet ; use starlet

package body timer is

-- Package: timer

-- Description: This package provides two subprograms which are called
-- to time operations in the vms environment.

-- References: Please see the VAX/VMS System Services Reference Manual
-- under the $GETJPI system service description.

-- Revision history: S. French 25-Jan-1989

-- Host processor: VAX/VMS 4.7

-- Package dependencies: This package interfaces with the VMS system
-- service $GETJPI to get the cpu time.
------------------------------------------------------------------

function cputimeclock return integer is
cputim : integer ;
pragma volatile ( cputim )
jpi status : condvaluetype
jpiitem list : constant item listtype :-

( ( 4 , jpi_cputim , cputim'address , address zero )
( 0 , 0 , address zero , address-zero ) )

begin
-- call getjpi to set cputim to total accumulated cpu time
-- (in millisecond tics)

getjpi ( status -> jpistatus , itmlst -> Jpi_itemlist )
return (cputim * 10);

end cpu time clock ;

procedure inittimer( obJ : out microsectimer ) is
begin

obj :. microsec timer( cpu_timeclock );
end init timer;

function elapsedtime( obj : in microsec timer ) return integer is
begin

return cputimeclock - integer( obj );
end elapsed-time;

function identity( arg integer ) return integer is
some value : integer := 0;

begin
some value := some-value + arg;
return some-value;
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end identity;

function alvays_true return boolean is
bool value :boolean :~true;

begin
return bool value;

end always-true;

begin
null;

end timer; A
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package timer is

-- See bottom for comments on how to use the timer

type microsec timer is private;

procedure init timer( obj : out microsec timer );

function elapsed time( obj in microsectimer ) return integer;

function identity( arg : integer ) return integer;

function alwaystrue return boolean;

private
type microsec timer is new integer;

end timer;

-- Package: timer
-- Description: This package provides two subprograms which are called

-- to time operations.

-- Calling sequence: Call the subprograms in this order:

-- loop count : constant integer :- 100; -- say...
-- dummy timer : timer.microsec timer;
-- dummy_elapsedtime : integer;
-- dummy arg : integer;
-- my_timer : timer.microsec timer;
-- my_elapsed_time : integer;

-- begin

-- now loop through dummy loop to determine the length of time
-- it takes to run through the loop itself. We will subtract
-- this out later.

-- timer.init timer( dummy timer );
-- for i in l..loopcount loop
-- dummy_arg := timer.identity( dummy_arg );

end loop;

-- if timer.always true then
dummyelapsed_time :- timer.elapsed_time( dummy_timer );

-- end it;

-- now run through the same loop and add the actual code that
-- you want to time.

-- timer.inittimer( mytimer );
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-- for i in 1..loop_count loop
-- do something here that needs timing...
-- timer.identity( dummy_arg );
-- end loop;

-- if timer.alvays true then
-- my_elapsed_time -= timer.elapsed_time( my_timer );
-- end if;

-- now subtract off the dummy loop time and divide by the
-- number of times that the loop occurs. This equals one
-- iteration of the interesting code.

-- time for one iteration :=
-- ( myelapsedtime - dummy elapsed_time ) / loop-count );

-- note that the value of my timer is not changed by a call to
-- timer.elapsed_time. You can have as many timers as you wish.
-- Revision history: S. French 25-Jan-1989
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package body timer is

-- Package: timer

-- Description: This package provides two subprograms which are called
-- to time functions in the unix environment. This timer was used to
-- perform timing on the MIPS Magnum 3000 computer system.

-- References: Please see the man page clock for information about how

-- the unix time is obtained.

-- Revision history: S. French 25-Jan-1989

-- Host processor: gppe gppe 3_10 UMIPS mips m120-5 ATTV3_0

-- Package dependencies: This package interfaces with the UNIX system
-- call "clock".

function unix clock return integer;
pragma INTERFACE(C, unix clock);
pragma INTERFACENAME(unix_clock,"clock");

procedure inittimer( obj : out microsectimer ) is
begin

obj := microsec timer( unix clock );
end init timer;

function elapsed-time( obJ ; in microsec_timer ) return integer is
begin

return unix clock - integer( obj );
end elapsedtime;

function identity( arg : integer ) return integer is
some-value integer := 0;

begin
some value := some value + axg;
return some-value;

end identity;

function always true return boolean is
bool value : boolean := true;

a begin
return bool value;

end alwaystrue;

begin
null;

end timer;

B-51



with text io; use textio;
with data structpkg; use data struct pkg;
procedure READDATA (INFILE : IN OUT FILETYPE;

positions : out means array_type;
weights : out weightsarraytype) is

-- Procedure Name: READ DATA

-- Purpose: Procedure READ DATA is called by Procedure Main
-- to read in the input data file.

i : integer := 0;
j : integer :- 0;
package FLOATIO is new TEXTIO.FLOATIO(FLOAT);

begin

while not END OF FILE(INFILE) loop
FLOAT IO.GET(INFILE, positions(i));
i :.I + 1;

FLOAT IO.GET(INFILE, positions(i));
i :. f + 1;
FLOAT IO.GET(INFILE, weights(j));
j :. j + 1;
SKIP LINE(INFILE);

end loop;

CLOSE(INFILE);

end READ-DATA;
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58.000000 19.000000 62.000000
59.000000 19.000000 74.000000
60.000000 19.000000 70.000000
57.000000 20.000000 76.000000
58.000000 20.000000 90.000000
59.000000 20.000000 91.000000
60.000000 20.000000 78.000000
61.000000 20.000000 52.000000
56.000000 21.000000 75.000000
57.000000 21.000000 96.000000
58.000000 21.000000 101.000000
59.000000 21.000000 91.000000
60.000000 21.000000 67.000000
56.000000 22.000000 75.000000
57.000000 22.000000 100.000000
58.000000 22.000000 108.000000
59.000000 22.000000 104.000000
60.000000 22.000000 92.000000
61.000000 22.000000 72.000000
56.000000 23.000000 84.000000
57.000000 23.000000 135.000000
58.000000 23.000000 159.000000
59.000000 23.000000 165.000000
60.000000 23.000000 155.000000
61.000000 23.000000 124.000000
62.000000 23.000000 61.000000
56.000000 24.000000 105.000000
57.000000 24.000000 164000000
58.000000 24.000000 190.000000
59.000000 24.000000 196.000000
60.000000 24.000000 185.000000
61.000000 24.000000 151.000000
62.000000 24.000000 74.000000
55.000000 25.000000 59.000000
56.000000 25.000000 109.000000
57.000000 25.000000 173.000000
58.000000 25.000000 200.000000
59.000000 25.000000 206.000000
60.000000 25.000000 194.000000
61.000000 25.000000 160.000000
62.000000 25.000000 81.000000
63.000000 25.000000 58.000000
36.000000 26.000000 52.000000
56.000000 26.000000 105.000000
57.000000 26.000000 165.000000
58.000000 26.000000 191.000000
59.000000 26.000000 197.000000
60.000000 26.000000 185.000000
61.000000 26.000000 152.000000
62.000000 26.000000 80.000000
63.000000 26.000000 58.000000
36.000000 27.000000 60.000000
37.000000 27.000000 73.000000
40.000000 27.000000 85.000000
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